首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses the results of disk tests designed to examine the effect of surface roughness and surface texture on scuffing and related behavior. AISI 9310 steel disk of varying surface roughness and surface texture, along with a MIL-L-7808G lubricant, were used. It is shown that, under otherwise comparable situations, (a) an increase in the composite surface roughness increases the coefficient of friction at scuffing, decreases the scuff failure load, and decreases the critical temperature, (b) the cross-ground disks give a lower coefficient of friction at scuffing and a higher scuff failure load than the circumferentially-ground disks, but nearly the same critical temperature, and (c) an increase in the sliding velocity or sum velocity, at a constant sliding-to-sum velocity ratio, decreases the coefficient of friction at scuffing, decreases the scuff failure load, and decreases the critical temperature.The superior performance of the cross-ground disks compared with the circumferentially-ground disks is attributed to the effect of surface texture on microelastohydrodynamic action. The variations of the oil film thickness ratio at scuffing, the coefficient of friction at scuffing, and the critical temperature with respect to surface roughness, surface texture, and operating variables have been shown to correlate well with a dimensionless parameter ξ?.  相似文献   

2.
J. Perry  T.S. Eyre 《Wear》1977,43(2):185-197
The friction and wear resistance of two commercial manganese phosphate coatings have been evaluated. Grey cast iron wear pins were treated by the two processes and were tested by sliding against a steel disc, under both lubricated and dry sliding wear conditions.Phosphating increases the sliding distance to scuffing as well as the scuffing load, whilst marginally reducing the coefficient of friction. No advantage was found in phosphating dry sliding surfaces.Phosphating reduces the likelihood of adhesive wear in marginal or poorly lubricated sliding couples. The choice of phosphate coating is primarily dependent on the surface finish of the sliding counterface; thin coatings are suitable if the counterface is smooth but thicker coatings are superior against rougher surfaces.  相似文献   

3.
王芳  毕秦岭  王小波 《润滑与密封》2007,32(9):49-51,55
采用SRV型摩擦磨损试验机分别考察了Ti6Al4V/钢摩擦副在多种脂肪醇润滑下的摩擦磨损性能。结果表明,与液体石蜡相比,碳链长度小于碳8的脂肪醇作为Ti6Al4V/钢摩擦副的润滑剂表现出良好的润滑性能,其润滑机制是在Ti6Al4V磨损表面形成吸附膜。载荷和频率明显影响Ti6Al4V/钢摩擦副在脂肪醇润滑下的摩擦磨损行为和摩擦磨损机制:当载荷较小时,Ti6Al4V磨损表面主要发生轻微的擦伤;随着载荷增加,Ti6Al4V磨损表面擦伤严重并在更高载荷下发生较为严重犁沟和塑性变形。  相似文献   

4.
The authors have investigated the action of compositions containing AW/EP additives under scuffing conditions and the influence of temperature on the wear of friction elements lubricated with selected compositions. It has been stated that postponing of scuffing initiation is not always sufficient to obtain very good strength of the surface layer and decreased wear. Furthermore, the results show the influence of temperature and load on the additive action. Extreme friction conditions result in greater wear intensity and change in the lubricating action of additives.  相似文献   

5.
In this study, an effort was made to control the friction and wear behavior of silicon carbide (SiC) and silicon nitride (Si3N4) ceramics using an ultrasonic nanocrystalline surface modification (UNSM) technique. The friction and wear behavior of the ceramic specimens was investigated using a ball-on-disk tribotester under dry conditions against two different Si3N4 and bearing steel (SUJ2) balls. The experimental test results revealed the possibility of controlling the friction and wear behavior of ceramics, where the friction coefficient and wear resistance of the specimens were improved by the UNSM technique. The hardness of the specimens also increased after UNSM treatment, but it decreased abruptly with increasing depth from the very top surface. Microscratch tests showed that the critical load of the specimens was improved by the UNSM technique. In addition, Raman spectra results revealed that no additional phase was detected after UNSM treatment, but the intensity decreased after UNSM treatment. Hence, the UNSM technique ensures stronger ceramics and enables better friction and wear behavior than available conventional sintered ceramics.  相似文献   

6.
Friction and scuffing behaviour of grey cast iron as influenced by the surface roughness under sparse lubrication conditions is studied. The studies are carried out on a three-shoe-on-disc machine under the conditions of parallel sliding. The experiments were conducted at three oil supply rates of 0.10, 0.22 and 0.36 μg/cm2 per contact obtained through a mist oiling system and with specimens of cast iron shoes of different roughness values, Ra, between 0.04 and 2.0 μm against a 0.55% C steel disc. In a step load procedure, the friction torque at the end of each load step and the scuffing load are the major parameters measured. Results of friction and scuffing behaviour as a function of roughness and oil supply rates have been discussed.  相似文献   

7.
This paper describes an investigation of lubricating oils under extreme-pressure (EP) conditions in a specially modified four-ball tester. A new test method developed at the Tribology Department of ITeE described in Part I of this paper was used. In this, during a test run, the applied load is increased continuously and the friction torque is measured. A sudden increase in the friction torque indicates the collapse of the lubricating film — where scuffing is initiated. The load at this moment is called the scuffing load. If the load is increased further, it is possible to observe scuffing propagation until seizure occurs, i.e., a defined, maximum friction torque is reached. Thus, scuffing is considered as a process leading to seizure. Using the method, tribological experiments were performed employing various lubricating oils consisting of viscosity-index improvers and antiwear (AW) and extreme-pressure (EP) additives added to a base oil. Mineral and synthetic base oils of different kinematic viscosities were used. The aim was to investigate the influence of such lubricants on scuffing initiation and propagation with the present methodology. In Part I it was shown that scuffing initiation depends strongly on the kinematic viscosity of the lubricant; the higher the viscosity, the greater the scuffing load. The presence of AW and EP additives in the lubricant increases the scuffing load significantly. It was also shown that the kinematic viscosity of the lubricant oils has no effect on scuffing propagation. However, scuffing propagation is significantly mitigated by AW and, to a greater extent, by EP additives. The results of surface analyses show the decisive nature of the chemical reactions of AW and EP additives with the steel ball surface under scuffing conditions, as well as the possible diffusion of sulphur and phosphorus. Chemical reactions and diffusion lead to the creation of an inorganic surface layer (probably iron sulphide), the good anti-seizure properties of which limit scuffing propagation.  相似文献   

8.
MoS2/Ti low-friction coating for gears   总被引:1,自引:0,他引:1  
The applicability of a multilayer composite surface coating in gears is discussed in this work, mainly in what concerns to gear efficiency at normal operating conditions and to scuffing load capacity. The average friction coefficient between gear teeth is discussed and compared with uncoated steel gears.The disulfide molybdenum/titanium (MoS2/Ti) composite coating is studied and the deposition procedure is described.Several screening tests, like Rockwell indentations, ball cratering, pin-on-disc and reciprocating wear, were performed to evaluate the adhesion to the substrate, the tribological performance of this coating and his applicability in heavy loaded rolling-sliding contacts, such as found in gears.FZG gear efficiency tests were performed using type C gears in order to evaluate the influence of the surface coating in gear efficiency, for a wide range of operating conditions. These tests in conjunction with a numerical model for the energetic balance of the FZG gearbox allowed the determination of the average friction coefficient between gear teeth, taking into account the presence of the surface coating.FZG gear scuffing tests were also performed using type C gears in order to evaluate the coating anti-scuffing performance, which proved to be very significant.  相似文献   

9.
Scuffing is a major problem that limits the life and reliability of sliding tribo-components. When scuffing occurs, friction force rises sharply and is accompanied by an increase in noise and vibration; severe wear and plastic deformation also occur on the damaged surface. Attempts have been made over the years to combat scuffing by enhancing the surface properties of the machine elements, and by methods involving lubricant formulation and coating application.

In this study, the authors evaluated the scuffing performance of an amorphous, near-frictionless carbon (NFC) coating that provides super-low friction under dry sliding conditions. The test configuration used a ball-on-flat contact in reciprocating sliding. The coating was deposited on HI3 steel. An uncoated 52100 steel ball was tested against various coated flats in room air. Compared to uncoated surfaces, the carbon coating increased the scuffing resistance of the sliding surfaces by two orders of magnitude. Microscopic analysis shows that scuffing occurred on coaled surfaces only if the coating had been completely removed. It appears that depending on coating type, the authors observed that coating failure occurs before scuffing failure by one of two distinct mechanisms: the coating failed in a brittle manner and by spoiling, or by gradual wear.  相似文献   

10.
In this work, the friction and wear properties of Kevlar pulp reinforced epoxy composites against GCr15 steel under dry sliding condition were evaluated on a reciprocating ball-on-block UMT-2MT tribometer. The effects of Kevlar pulp content on tribological properties of the composites were investigated. The worn surface morphologies of neat epoxy and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms discussed. The results show that the incorporation of Kevlar pulp into epoxy contributed to improve the friction and wear behavior considerably. The maximum wear reduction was obtained when the content of Kevlar pulp is 40 vol%. The friction coefficient of epoxy and its composites increased with load while increase in the sliding frequency induced a reverse effect. Fatigue wear and scuffing were notable for the neat epoxy. The fatigue cracks were greatly abated when the filler content was 40 vol%. The wear grooves appeared on the worn surface at higher filler content.  相似文献   

11.
传统油或脂润滑剂在极端工况环境下无法满足碳钢类零件的减摩要求,采用干膜润滑剂是提高极端工况环境下碳钢表面摩擦磨损性能的可行性方法。采用超声波分散方法制备以石墨粉末为基体的干膜润滑剂,使用压力喷涂技术使其沉积在碳钢试件表面,在端面摩擦试验仪中开展干摩擦和石墨干膜润滑剂润滑下摩擦磨损性能对比性试验研究。试验结果表明:石墨干膜润滑剂在碳钢表面的沉积效果较好,沉积的石墨干膜润滑剂具有较好的润滑性能,可以有效地保护碳钢表面不被过度磨损;喷涂石墨干膜润滑剂的碳钢试件的工作寿命随着压力载荷和主轴转速的增大而缩短,负载和滑动速度的联合作用会加速涂层向稳定方向的过渡;磨损过程中形成的微观润滑剂颗粒会形成颗粒流润滑,适当添加石墨颗粒粉末可能会延长润滑剂正常发挥减摩作用的时间。制备的石墨干膜润滑剂为碳钢在极端工况环境下的减摩提供了支持。  相似文献   

12.
This paper summarizes the results of scuffing tests performed on AMS 6260 steel disks, covering three oils (a MIL-L-7808G oil, a MIL-L-23699A oil, and a straight mineral oil), two oil supply temperatures, a variety of sliding and sum velocities, and two modes of operating the test disks such that the potential failure sites on the disk surfaces either do or do not synchronize precisely in repeated cycles of operation. It is shown that, under otherwise comparable situations, (a) different oil-steel combinations allow the operation to penetrate by different degrees into the boundary lubrication regime before scuffing occurs, (b) an increase in the sliding velocity, at constant sum velocity, decreases the scuff failure load and the critical temperature, (c) an increase in the sum velocity, at constant sliding velocity, increases the scuff failure load and the critical temperature, (d) the effect of changing the sliding velocity or sum velocity, at a constant sliding-to-sum velocity ratio, depends on the balance of the opposing effects of sliding ans sum velocities at the particualar velocity ratio of interest, and (e) the scuff failure load and the critical temperature are markedly increased when the potential failure sites on the disk surfaces do not precisely synchronize on repeated cycles of operation.It is further demonstrated that the variations of the oil film thickness at scuffing, the coefficient of friction at scuffing, and the critical temperature with respect to all surface and operating variables correlate satisfactorily with a dimensionless parameter ξf.  相似文献   

13.
The influence of multilayer composite surface coatings on gear scuffing load carrying capacity, gear friction coefficient and gearbox efficiency is discussed in this work.The deposition procedures of molybdenum disulphide/titanium (MoS2/Ti) and carbon/chromium (C/Cr) composite coatings are described.Tests reported in the literature, such as Rockwell indentations, ball cratering, pin-on-disc and reciprocating wear, confirm the excellent adhesion to the substrate and the tribological performance of these coatings, suggesting they can be applied with success in heavy loaded rolling–sliding contacts, such as those found in gears.FZG gear scuffing tests were performed in order to evaluate the coatings anti-scuffing performance, which both improved very significantly in comparison to uncoated gears. These results in conjunction with the friction power intensity (FPI) scuffing criterion allowed the determination of a friction coefficient factor XSC to include the coating influence on the friction coefficient expression.The composite coatings were also applied to the gears of a transfer gearbox and its efficiency was measured and compared at different input speeds and torques with the uncoated carburized steel gears. Significant efficiency improvement was found with the MoS2/Ti coating.  相似文献   

14.
A method for the tribological assessment of lubricants under conditions of scuffing is presented. The method uses a four‐ball tester, and allows one to assess the effect of lubricant on scuffing intensity through an analysis of changes in the friction torque and wear of the stationary balls, at continuously increasing load. The behaviour of a lubricant under scuffing conditions can be characterised using the so‐called limiting pressure of seizure poz, which depends on the load at which the balls seize and the average value of the wear area calculated from the wear‐scar diameters measured on the stationary balls. A comparison is made ‐ from the point of view of the resolution, time consumption, and cost ‐ of the new method with the existing, standard tests, using a four‐ball tester and a gear test rig (FZG). It is concluded that the proposed method, unlike standard FZG and certain four‐ball tests, enables one to differentiate between gear oils, in agreement with their API GL performance level. The very short run‐time of the new method enables one to perform more tests and obtain a low standard deviation. The new method is much cheaper than the standard four‐ball and FZG methods.  相似文献   

15.
In this study, a direct observation of a point contact area was conducted to understand the scuffing phenomenon. The contact area was produced between a rotating sapphire disc and a stationary steel ball and it was lubricated using n-hexadecane. The image detected by a colour digital CCD camera, load, and friction were synchronously recorded by a computer during the test. It was found that wear debris produced in the contact area played an important role in the wear process, which includes running-in and scuffing. In the test, debris particles accumulated in the inlet zone, and some particles entered the contact area to cause abrasive wear of the ball surface, even in the light-load stages. During the running-in process, the abrasive wear by debris particles changed the conformity between the sliding surfaces. In the high-load stage, just before the occurrence of scuffing, the whole contact area was flattened at once. When scuffing occurred, the contact area suddenly expanded. The conformity of the contact area was dramatically changed during its expansion. The flattening of the whole contact area and dramatic expansion with changing the conformity seemed to play important roles in scuffing.  相似文献   

16.
The wear phenomenon of metals under dry sliding is, generally, divided into two modes of severe and mild wear. A discontinuous transition between the wear modes often takes place in a certain load range. The T1-transition is usually observed at lower levels of load or sliding velocity. There is a great difference in wear rate between severe and mild wear. This indicates that the occurrence of severe wear should be avoided, especially in the field of machine design to prevent energy loss, occurrence of noise and vibration, and life reduction of machines and their components. Therefore, it is important for machine designers to know the relationship between friction and wear and the difference in properties of the wear surfaces in the two wear modes. In this study, wear tests of 0.35% C steel in contact with itself under constant load were conducted in moist air at various contact loads under dry sliding. The friction and wear were measured continuously throughout each test. After the tests, the relationship between friction and wear and the difference in properties of the wear surfaces were investigated in each wear mode. From the results, the upper and lower critical loads (Pacr and PAcr) appeared between severe and mild wear. The phenomenon of zero wear has been newly found in the early period at very low loads. The zero wear continued for a long sliding distance and then changes to mild wear. The critical load between zero wear and mild wear is defined as Pzerowear. The load was changed once in a step-wise manner from low to high levels in process of test. Since the rubbing history under mild wear condition at the low load in the first stage affected the properties of wear surface, the wear mode at the high load in the second stage changed from ‘mild wear’ to ‘quasi-mild wear’ having a low rate. From the relationship between sliding distance necessary for the appearance of quasi-mild wear and contact load in the first stage, the boundary curve between severe wear and quasi-mild wear in the second stage is hyperbolic. This curve gradually approaches Pzerowear with decreasing contact load. Thus, Pzerowear is one of the important critical loads for elucidating the test results under varying load.  相似文献   

17.
In this study, the tribological behavior of ultra-high-molecular-weight polyethylene (UHMWPE) against a GCr 15 steel ball during fretting wear conditions was investigated using an oscillating reciprocating tribometer. The aim of this study was to characterize the critical value of normal load and stroke corresponding to this transition in UHMWPE worn surface at room temperature. Results showed that there existed a critical value of load or stroke at fixed condition. The friction coefficient and wear volume loss of UHMWPE at or near the critical values of load and stroke exhibited extreme changes. Based on observation of the worn surface by scanning electron microscopy (SEM) and 3D surface profiler measurements, it can be found that damage to the worn surface can be linked to the contact load and stroke. In addition, results showed that during the process of fretting wear under different load or stroke conditions, the gross slip regime dominated throughout the whole test period.  相似文献   

18.
Tribochemistry, the chemistry of interacting surfaces under the influence of a lubricant, helps in the appropriate selection of suitable lubricant additives for specific uses. Modern lubricants are usually formulated from a range of petroleum base oils or synthetic fluids incorporating a variety of chemical additives for performance enhancement. Extreme‐pressure (EP) and anti‐wear (AW) additives are used extensively in lubricants for hypoid gears and metal cutting and forming operations to reduce wear, modify friction, and prevent scuffing of moving metallic parts. The present paper includes the synthesis and the evaluation of the tribological properties of 0.5% (w/v) solutions of some zinc bis‐(alkyl/dialkyl/alkylaryldithiocarbamates) in paraffin oil using 12.7 mm diameter steel bearing ball specimens in four‐ball tests. All the synthesised zinc dithiocarbamate additives in general, and zinc bis‐(morpholinodithio‐carbamate) (A4) in particular, exhibited good AW, EP, and friction‐reducing properties. Additive A4 especially gave low values of wear‐scar diameter and coefficient of friction at higher loads and higher values of load wear index and flash temperature parameter during EP tests (ASTM D 2783) and afforded lower values of wear‐scar diameter in a one‐hour wear test (ASTM D 2266–67). The surface topography of the wear‐scar matrix of the used ball specimens was investigated by scanning electron microscopy.  相似文献   

19.
Bronze–graphite composite was prepared using powder metallurgy. The friction and wear behaviors of the resulting composites in dry- and water-lubricated sliding against a stainless steel were comparatively investigated on an MM-200 friction and wear tester in a ring-on-block contact configuration. The wear mechanisms of the bronze–graphite composite were discussed based on examination of the worn surface morphologies of both the composite block and the stainless steel ring by means of scanning electron microscopy equipped with an energy dispersion spectrometry and on determination of some typical elements on the worn surfaces by means of X-ray photoelectron spectroscopy. It was found that the friction coefficient was higher under water lubrication than that under dry sliding and it showed margined change with increasing load under the both sliding conditions. A considerably decreased wear rate of the bronze–graphite composite was registered under water-lubricated sliding than under dry sliding, though it rose significantly at a relatively higher load. This was attributed to the hindered transfer of the composite onto the counterpart steel surface under water-lubricated sliding and the cooling effect of the water as a lubricant, while its stronger transfer onto the steel surface accounted for its higher wear rate under dry sliding. Thus, the bronze–graphite composite with much better wear-resistance under water-lubricated sliding than under dry sliding against the stainless steel could be a potential candidate as the tribo-material in aqueous environment.  相似文献   

20.
The effects of normal load, sliding speed, and surface roughness on the friction and wear of high-purity niobium (Nb) during sliding without and with an introduction of water were systematically investigated. Increasing the normal load or sliding speed decreased the friction of the Nb under the both dry and wet conditions because the increased wear of the Nb decreased the interfacial shear strength between the steel ball and Nb by promoting the surface roughening and the production of wear debris. However, the Nb tested at the lowest sliding speed under the lowest normal load with water exhibited the lowest friction and wear due to the formation of oxide layer on the wear track. The friction and wear of the Nb tested under the dry condition decreased with increased surface roughness because the higher interfacial shear strength between the steel ball and smoother Nb resulted in the earlier breakdown of the native oxide layer and direct contact between the steel ball and Nb. However, increasing the surface roughness of the Nb increased its friction and wear under wet conditions, probably due to the easier breakdown of the oxide layer that formed on the rougher surface during sliding. The tribological results clearly showed that the introduction of water during sliding had a significant influence on the tribological properties of the Nb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号