首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solvent recycling technique is studied for treatment of waste poly(vinyl chloride) (PVC) bottles. The process proposed basically comprises dissolution of the collected material, reprecipitation, through washing of the polymer obtained, and drying. On the other hand, solvent mixtures involved are separated by distillation for further reuse. Cyclohexanone/n-hexane proved to be the most satisfactory solvent/non-solvent system due to the high yields attained in polymer of small grain size while recovering most of the solvents employed. Excellent molecular weight and mechanical property retention characterizes the polymer grade recycled.  相似文献   

2.
Extrusion blow molding is a well-established technology for the manufacture of fossil-based plastic bottles. The process is, however, still little used for the manufacture of bottles with a low environmental footprint, especially those based on bioplastic from renewable sources. In this context, the objective of this work is precisely the study and experimental design of poly(lactic acid) PLA/poly(butylene succinate) PBS/micro-lamellar talc compounds for the manufacturing of bioplastic bottles, basically for wine packaging. In particular, the design was carried out to ensure, primarily, an adequate processability of the bioplastic material in the blowing process. Second, the compound was loaded with different micro-lamellar talc content so as to achieve protection from the environmental factors, which is of paramount importance to ensure a long shelf-life to wine. The bio-derived polyester resins are very complex to transform, as they are subject to thermo-hydrolytic degradation phenomena during the processing of the polymer melt. Processability is further limited in the presence of high micro-lamellar talc content that increases the melt viscosity, thus making the material even more difficult to shape by extrusion blow molding. The experimental analysis involved the use of a co-rotating twin-screw extruder for the manufacture of the bioplastic compounds. The compounds were first subjected to thermo-rheological and physical characterization tests. Second, it was tested in the extrusion blow molding process. The experimental results have shown that blends based on bio-derived polyester resins can be adequately processed by extrusion blow molding, showing extremely stable rheological behavior both during the extrusion phase of the parison and the subsequent blowing process of the parison itself. These blends have, therefore, an interesting potential to be used as an alternative with a low environmental footprint to oil-based plastics in the production of wine bottles.  相似文献   

3.
The parison extrusion and the effects of post-extrusion swelling and sagging in the blow molding process have been studied by several authors and some qualitative relationships with rheological parameters have been attempted. The aim of this work is to show that, under some simplifying assumptions, the relevant rheological parameters—the swelling of the parison and its tensile compliance—can be directly determined from the viscoelastic analysis of the process. The reliability of the model has been tested by experiments carried out by the pinch-off mold technique which provides the parison weight profile as a function of both previous extrusion history and mold closing delay. First of all it has been shown that the proposed model is suitable to represent the data. The swelling behavior shows the expected dependence on time and shear rate and the long-time swelling data compare well with those determined by capillary extrusion experiments. It has also been found that the measured tensile compliance is of the same order of magnitude as that determined by conversion of tensile relaxation experiments; however, in the blow molding experiments the compliance of the parison decreases with increasing extrusion shear rate, i.e., by increasing the induced anisotropy of the polymer. As rheological examples, the performance displayed on both industrial and laboratory machines is discussed for three high density polyethylenes.  相似文献   

4.
An important factor in the selection of blow molding resins for producing handled bottles is the effective diameter swell of the parison. Ideally, the diameter swell is directly related to the weight swell and would require no separate consideration. In actual practice, the existence of gravity, the finite parison drop time and the anisotropic aspects of the blow molding operation prevent reliable prediction of the parison diameter swell directly from the weight swell. The parison diameter swell is a complex function of the weight swell, the rate of swell and the melt strength. Elements of this function are presented which show the effect of extrusion rate, parison drop time and parison weight. A technique is presented which allows the estimation of local weight and diameter swell ratios. Their direct relationship is confirmed by data obtained on several blow molding resins. The relationship between weight swell and diameter swell is definitely anisotropic. A mathematical model for swell is proposed which incorporates experimentally determined rate constants and swell coefficients. Correlations are given which suggest fundamental relationships between these derived coefficients and basic variables such as resin properties or process conditions. The model's predictive capability is demonstrated by using it to back calculate parison dimensions.  相似文献   

5.
Optimization of final part thickness distributions is crucial in the extrusion blow molding process in order to minimize resin usage. Prediction of part thickness distributions from basic process and material parameters would be ideal. However, attempts to do so have been unsuccessful, largely because of the inability to predict parison thickness profiles. One must therefore resort to measurement of the parison thickness profile and estimation of the final part thickness distribution by computational methods. This paper describes a new technique for the noncontact estimation of parison thickness profiles in continuous extrusion blow molding. The method accounts for sag and requires no previous knowledge of rheological data. It can be employed on-line for the purposes of process monitoring and control. The approach is based on the measurement of the parison length evolution with time during extrusion, the parison diameter profile, the flow rate, and the melt temperature gradient along the length of the parison. These parameters are utilized in conjunction with a theoretical approach that describes the extrusion of a parison under the effects of swell, sag, and extrusion into ambient conditions. Results are presented for three resins of various molecular weight distributions. The degree of sag is minimal at the top and bottom of the parison, and reaches a maximum near the center of the parison. Results are also presented to demonstrate the versatility of the method under other process conditions, such as varying flow rate, die temperature, and die gap.  相似文献   

6.
The extrusion blow moulding process is becoming increasingly important in the polymer industry. Parison programming is a crucial component of the extrusion blow moulding process, since it allows for the optimization of resin usage in a given part. However, the inflation of programmed (variable thickness) parisons is very complex and is not a well understood phenomenon. The goal of this work is to present some experimental results demonstrating the effects of melt temperature on the inflation of programmed parisons. The inflation of parisons into a non-axisymmetric motor oil bottle is considered. Four parison thickness profiles are studied. These are (i) low magnitude constant thickness, (ii) high magnitude constant thickness, (iii) one step high to low magnitude thickness and (iv) two step low to high to low magnitude thickness. Three melt temperatures were used; 180, 200 and 220°C.  相似文献   

7.
The numerical modeling of the extrusion blow molding of a fuel tank is considered in this work. The integrated process phases are consecutively simulated, namely, parison formation, clamping, and inflation, as well as part solidification, part deformation (warpage), and the buildup of residual stresses. The parison formation is modeled with an integral type viscoelastic constitutive equation for the sag behavior and a semi-empirical equation for the swell behavior. A nonisothermal viscoelastic formulation is employed for the clamping and inflation simulation, since parison cooling during extrusion strongly affects the inflation behavior. Once the parison is inflated, it solidifies while in the mold and after part ejection. Warpage and residual stress development of the part are modeled with a linear viscoelastic solid model. Numerical predictions are compared with experimental results obtained on an industrial scale blow molding machine. Good agreement is observed. A process optimization based on a desired objective function, such as uniform part thickness distribution and/or minimal part weight, is performed. The integrated clamping, inflation, and cooling stages of the process are considered. The optimization is done by the systematic manipulation of the parison thickness distribution. Iterations are performed employing a gradient based updating scheme for the parison thickness programming, until the desired objective of uniform part thickness is obtained.  相似文献   

8.
Control over final part thickness distributions in extrusion blow molding would be very useful in resin optimization. An on-line measurement is essential for process monitoring and control of the part dimensions. Excessive resin usage results in material waste and increased cycle times because of increased cooling requirements. An inadequate thickness results in decreased mechanical strength, especially in regions along the part where large blow ratios or complex geometries exist. Neural networks are investigated as a method for the on-line prediction of the final part distribution from the parison dimensions. The purpose of this work is to demonstrate the feasibility, for preliminary use, of neural networks for this application. The network inputs include the initial parison thickness and tempera-ture profiles, the bottle mold geometry and a rheological parameter representative of the material. Varying blow-up ratios are obtained from the bottle mold geome-try. The network accesses data from a pool of eighty data sets for the training sequence. The data sets are broadly distributed with regard to the operating conditions, so as to give the network a wide range of applicability. The simulations are performed on data sets not present in the access pool used for training.  相似文献   

9.
通过研究了以HDPE为基料生产高速通信电缆用绝缘料的分子量分布、流变性能和加工性能,在聚合时通过改变分子量调解剂量和工艺条件,改善其分子量分布使其具有双峰结构从而改善加工性能,结果表明:该产品具有优异的力学性能、介电性能、各项指标达到了邮电部YD/T760-1995标准;同时具有良好的加工性能,能够满足高速挤出的要求。  相似文献   

10.
In today's blow molding of complex parts, an optimal resin distribution is critical to a successful operation. These goals are mostly attained through a technique known as parison programming. The process involves varying the die gap during extrusion and therefore results in a parison having a variable thickness along its length. The subsequent inflation of a variable thickness parison is a complex phenomenon involving the interaction of many process variables. The final thickness distribution and inflation patterns were obtained for various programmed parisons. Constant, one step, two step, and sinusoidal thickness parisons were studied. The inflation patterns were monitored by employing a transparent mold in conjunction with a video camera. The experimental data indicated the presence of an oscillatory inflation pattern for some of the variable thickness parisons. The experimental final part thickness distribution for these cases was highly nonlinear. Theoretical predictions of the final thickness distribution were also obtained for some of the cases. The simulation is based on the inflation of a Mooney-Rivlin hyperelastic material. A wide range of deformation is accounted for by introducing an evolutionary Mooney constant, dependent on the level of deformation.  相似文献   

11.
A mathematical simulation of the blow-molding cycle has been developed by combining general conservation principles along with appropriate constitutive relations for the material. A model of the parison formation stage has been devised by considering the competing effects due to swell and drawdown. A more rigorous numerical analysis of parison formation is also discussed. A theoretical treatment of parison inflation is described for both inelastic and viscoelastic materials by assuming uniform radial growth, Comparisons are made with experimental data for all phases of the molding cycle. The mathematical model is in reasonable quantitative agreement with experimental results and is capable of elucidating the influence of material properties and process conditions on the dynamics and performance of the blow-molding process.  相似文献   

12.
《国际聚合物材料杂志》2012,61(3-4):201-215
Abstract

An analysis for describing parison (cylindrical) inflation behavior in the extrusion blow molding process is presented. A general growth equation is developed starting from the basic conservation principles. Assuming the polymer melt constituting the parison to behave as a purely viscous Generalized Newtonian Fluid, the effect of different process and material parameters on the inflation process is investigated. From the numerical results, it is inferred that the growth behavior for inelastic liquid exhibits a general tendency of approaching exponential (constant stretch rate) growth as elapsed time progresses. Besides, the initial parison dimensions are determined to play a very significant role in governing the inflation process. Moreover, the inertial contribution owing to fluid motion is found to exert an appreciable influence on the growth dynamics, and hence cannot be neglected without introducing severe approximations in the analytical development.  相似文献   

13.
Parison dimensions in extrusion blow molding are affected by two phenomena, swell due to stress relaxation and sag drawdown due to gravity. It is well established that the parison swell and sag are strongly dependent on the die geometry and the operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of the die geometry, the operating conditions, and the resin properties on the parison dimensions using high density polyethylene. Parison programming with a moving mandrel and the flow rate evolution in intermittent extrusion are also considered. The parison dimensions are measured experimentally by using the pinch-off mold technique on two industrial scale machines. The finite element software BlowParison® developed at IMI is used to predict the parison formation, taking into account the swell, sag, and nonisothermal effects. The comparison between the predicted parison/part dimensions and the corresponding experimental data demonstrates the efficiency of numerical tools in the prediction of the final part thickness and weight distributions. POLYM. ENG. SCI., 47:1–13, 2007. © 2006 Society of Plastics Engineers  相似文献   

14.
Two overriding characteristics for major applications of plastics in consumer products are: —the need for high volume production and —their exposure to hostile environments. Successful application and continued growth for plastics in these products requires knowledgeable prediction of performance in the process to produce the plastic part and in the environments to which it will be exposed during the product's lifetime. Progress on establishing relationships between material properties and structure are described with emphasis on response to melt process conditions and behavior when exposed to hostile environments. Commercial plastics and the processes by which they are converted into useful applications are complex systems. A multitude of interacting variables must be dealt with in order to achieve successful implementation in commercial products. Specific examples are discussed in the area of processing for non-Newtonian flow characteristics and overt effects in injection molding and extrusion, tailoring of polymers within established rheological limits and the influence of melt processing on physical and mechanical properties. The influence of application environments is discussed and specific examples are given for environmental stress cracking, stress-environment embrittlement and the effects of hot water solutions on polymer systems.  相似文献   

15.
芳纶1414纺丝过程中聚合体的相对分子质量变化及其控制   总被引:1,自引:0,他引:1  
芳纶1414是一种高强、高模、耐高温的高性能纤维。聚合体的相对分子质量对纤维的强度有很大的影响。在纺丝过程中,影响聚合体PPTA相对分子质量的因素有很多。在500t/a规模芳纶1414生产线上系统研究了硫酸浓度、溶解温度、溶解方式以及纺程中其它影响PPTA分子质量的因素,并提出合理的控制措施,为1000t/a规模生产线奠定一定的数据基础。  相似文献   

16.
The influence of polymer molecular weight on the mechanical properties of aliphatic polyketones was investigated. The molecular weight varied from 100,000 to 300,000 g mol−1. The crystallinity was found to be independent of polymer molecular weight, as was the glass transition temperature. The yield strength and stiffness of the aliphatic polyketone terpolymers were also found to be independent of molecular weight. The post yield behaviour showed strong dependency on polymer chain length. The draw stress was increased significantly with higher molecular weight material. The impact resistance was increased with molecular weight, resulting in ductile fractures with large energy consumption upon fracture. The brittle-to-ductile transition temperature was lowered with increasing chain length. The difference in material deformation was linked to the higher mechanical connectivity and more stable post yield behaviour of the polymers with an increased molecular weight.  相似文献   

17.
聚酰胺酸合成工艺与聚酰亚胺膜制备及表征   总被引:1,自引:0,他引:1  
景晓辉 《应用化工》2004,33(6):33-36
聚酰亚胺是一类新型高性能的聚合物材料,是由聚酰胺酸脱水环化而成,因此高分子量的聚酰胺酸是获得高性能PI的前提。探讨了聚酰胺酸合成过程中的影响因素,得出了合成高分子量的聚酰胺酸的最佳工艺条件为:均苯四羧酸二酐与4,4' 二氨基二苯醚摩尔比为1.015~1.020∶1,反应温度20℃,反应时间为3h,聚酰胺酸在N 甲基 2 吡咯烷酮中的特性粘度为0.62dL/g左右。采用热转化法将聚酰胺酸脱水环化制备成均苯型聚酰亚胺膜,通过差示扫描量热法、红外光谱等进行了表征,其玻璃化转变温度为365~385℃,拉伸强度达192.4MPa,表明得到的聚酰亚胺膜具有优良的机械性能。  相似文献   

18.
型坯温差法优化挤出吹塑中空工业制件壁厚分布的研究   总被引:1,自引:0,他引:1  
以典型复杂中空工业制件为研究对象,根据聚合物流变学原理,提出了用型坯温差法来优化挤出吹塑中空工业制件壁厚分布的均匀性:在型坯挤出或型坯吹胀之前,采用水或者空气强制冷却变形较大部位对应的型坯,使局部温度迅速降低,使型坯具有一定的温度梯度。结果表明,用型坯温差法优化后的吹塑成型油箱壁厚分布标准差由0.7249减小为0.4475、0.4582,壁厚均匀性明显得到改善,验证了利用型坯温差法优化油箱制件壁厚分布均匀性的方法是可行的。  相似文献   

19.
This work presents the effect of die geometry and die gap opening on the extrudate swell phenomenon, in complex parison formation using the vertical wall distribution system (VWDS) and partial wall distribution system (PWDS). The BlowParison© software from IMI is used to predict the parison formation for a combined VWDS/PWDS system, accounting for swell, sag, and nonisothermal effects. This software couples a fluid mechanics approach to represent the die flow, with a solid mechanics approach to represent the parison behavior outside the die, and a mathematical swell model to account for the pronounced elongational and shear stresses at high Weissenberg numbers. The emphasis is placed on experimental validation of the predicted parison dimensions using four diverging die geometries and different sets of VWDS/PWDS profiles. The experimental and predicted weight profiles for a dissected fuel tank are also presented. Both experimental and simulation results suggest a strong dependence of extrudate swell to the die geometry in the die land zone. The results also demonstrate the validity of the numerical predictions for part design purposes given the multitude of experimental validations presented in this work. POLYM. ENG. SCI., 2009. Published by the Society of Plastics Engineers  相似文献   

20.
Nanocomposite polymer electrolytes based on a plasticized high molecular weight poly(oxyethylene) (POE) reinforced with high aspect ratio cellulose nanoparticles were reported. The influence of tetra(ethylene) glycol dimethyl ether (TEGDME) as plasticizer is investigated. The study mainly focuses on the dynamic mechanical behavior and ionic conductivity performances. The miscibility of the blend POE/TEGDME was investigated using both thermal and mechanical investigations. Viable polymer electrolytes can be obtained from this combination, conciliating acceptable ionic conductivities and outstanding mechanical performances on a large temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号