首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Begelinger  A.W.J. De Gee 《Wear》1974,28(1):103-114
The mechanism of thin film lubrication of sliding point contacts of AISI 52100 steel has been studied as a function of load, sliding speed, composition and temperature of the lubricant.Below certain critical combinations of Hertzian pressure, speed and temperature the surfaces are kept apart by an elastohydrodynamic lubricant film. The load carrying capacity of this film depends primarily on the effective viscosity of the lubricant in the contact region which decreases with bulk oil temperature and with increasing sliding speed, because of friction induced thermal effects. After breakdown of the EHD film, boundary lubrication may still prevent severe adhesive wear. The transition from the boundary lubricated regime towards the regime of severe adhesive wear is a function of load (normal force), speed and bulk oil temperature and possibly depends on the conjunction temperature. Irrespective of the initial lubrication condition, oxidation of the steel surfaces leads to the (re)establishment of low friction, mild wear conditions.  相似文献   

2.
The authors showed in previous experiments with high viscosity polymeric lubricants that a non-classical elastohydrodynamic (EHL) film, which featured an inlet dimple, could be generated under pure sliding conditions. The phenomenon was tentatively attributed to boundary slippage. In this paper, much greater sliding is introduced in the experiments to gain further insight into film formation under boundary slippage. By putting all of the results on a load versus entrainment speed chart, it is found that the required conditions for the formation of the inlet dimple fall into an open triangular region in the chart. The existence of the inlet dimple can be maintained for a larger speed range with a higher load. The minimum speed required (the lower speed bound for the dimple existence) decreases only marginally with an increase in load but the speed of the disappearance of the dimple (the upper speed bound) increases with an increasing load. Interferograms show that with an increase in the slide-roll ratio, i.e., expanded boundary slippage, a bump occurs before the exit constriction, which indicates an obvious drop in film thickness, and the location of the minimum film thickness in the whole EHL contact moves from the outlet constriction to the center of the bump. The observed inlet dimple and bump have already been described in the previous numerical results that consider boundary slippage, and provide more justification for the boundary slippage postulation in the experimental films.  相似文献   

3.
低速重载齿轮的磨损试验与研究   总被引:3,自引:0,他引:3  
对圆周速度υ=1~4m/s的齿轮传动进行了磨损试验。试验表明,υ=1~4m/s低速重载齿轮均存在不同程度的齿面磨损,其磨损速率与圆周速度有关,且存在一最恶速度值,当齿轮处于最恶速度运动时磨损速率最大。对最恶速度现象进行了分析,认为边界润滑油膜仍具有一定的流变性,最恶速度现象与边界润滑油膜流变性形成的局部涡流有关。在试验条件下,最恶速度值为1.13~1.41m/s。为了提高齿轮的寿命,应避免齿轮在最恶速度及其附近运行。  相似文献   

4.
Susan D. Peart  J.M. Thorp 《Wear》1974,27(2):209-218
A high speed (1475 r.p.m.) four-ball machine, lubricated with solutions of stearic acid in both paraffin oil and more refined liquid paraffin, has been used to determine scuffing temperatures as a function of load and stearic acid concentration. Frictional heating was reduced to a minimum by using a very short (3 s) running time.A characteristic S-shaped plot of scuffing temperature against load was observed for each solution and solvent. The form of these curves is explained in terms of a gradual change, with increase in load, from predominant elastohydrodynamic lubrication to predominant boundary friction, accompanied by surface damage. By selecting the load at the point of inflection, scuffing temperatures show maximum sensitivity to stearic acid concentration and optimum conditions are attained for the study of boundary adsorption phenomena. The calculated heat of adsorption for stearic acid on steel at this point is about 30 % higher than the value calculated from transition temperatures determined using a low rotational speed of 0.75 r.p.m. It is considered that the higher value reflects that the boundary film functions at higher temperatures at high speeds.  相似文献   

5.
This work verifies the impact of lubricant viscosity and viscosity improver additives on diesel fuel economy. Eight lubricants were tested in a single-cylinder, four-stroke, direct injection diesel engine mounted on a dynamometer, under different load and speed conditions. Engine friction power was also investigated through Willans’ line. The results demonstrate that fuel economy obtained from multigrade viscosity oils is higher than that obtained from monograde viscosity oils. A linear relationship was obtained between the high temperature high shear viscosity and specific fuel consumption. The lubricant which provided lower fuel consumption also required lower friction power.  相似文献   

6.
混合流态下径向滑动轴承的静态特性研究   总被引:1,自引:0,他引:1  
以无限宽径向滑动轴承为研究对象,考虑油膜中同时存在层流和紊流两种流态,基于层流、紊流润滑理论,联立求解雷诺方程、能量方程和温黏方程,分析油膜中流态变化,得到压力分布、承载力、摩擦力和最高温度等特性参数。结果表明:随着转速的升高和偏心率的增大,油膜内流体从完全层流转变为完全紊流要经过一个复杂的流态变化过程;与单一层流流态相比,混合流态下油膜承载力和摩擦力较大,温升较高,黏度变化较大,这表明流态的改变和热效应对轴承特性有着不可忽略的影响,在计算轴承特性时,应准确判断油膜中流态,并考虑热效应的影响。  相似文献   

7.
针对高速重载弧齿锥齿轮节圆位置,基于热弹流润滑理论进行齿面润滑特性分析,研究不同工况锥齿轮油膜各特征(压力、膜厚、温升)二维轮廓曲线的变化情况。结果表明:高速重载的工况使得Hertz压力峰与二次压力峰出现合并的现象,并且弹流润滑中经典的中央油膜平坦现象并不显著,仅当温度降低使润滑油黏度增加时,才逐渐出现了中央油膜平坦的现象。为了在工程实践中能够有针对性地调整工况参数来改善齿轮的润滑状态,分析油膜特征参数对输入参数的敏感性,发现工况参数中对油膜最大压力的影响程度由大到小为弹性模量、黏度、转速、功率;对油膜最大温升与最小油膜厚度的影响程度由大到小为黏度、转速、弹性模量、功率。  相似文献   

8.
This paper considers friction polymer formation in the parched elastohydrodynamic contacts of instrument ball bearings. The experimental section describes a series of tests intended to isolate operating variables of load, speed and film thickness, and lubricant material variables of species and viscosity, as they influence formation rate. The paper then correlates load, speed and thickness results through the Arrhenius Equation for formation rate.  相似文献   

9.
考虑油膜润滑作用的渐开线齿轮动载荷分析   总被引:2,自引:0,他引:2  
以渐开线齿轮为研究对象,综合考虑齿面摩擦和油膜润滑作用,结合油膜与粗糙峰共同承载理论建立齿轮系统动力学模型。为深入研究不同转速对齿轮动态特性的影响,给出基于最小势能原理的稳态载荷分布模型,并对比分析渐开线齿轮在不同转速下冲击载荷沿啮合线的分布规律。计算结果表明:润滑油膜对共振区的动载荷有一定程度的削弱作用;齿廓误差越大,冲击越明显;油膜刚度呈强非线性,且随着润滑油粘度的增加而增大;低速时,冲击动载荷均值接近稳态分布,但在单双齿啮合交替点有明显波动;随着转速的升高,高频冲击衰减,动载荷和相对线位移逐渐呈现周期波动;随着螺旋角的增加,动载荷趋于平稳,且幅值有所降低。啮合初始段,摩擦因数较高;退出啮合段,动载荷减小,油膜变厚,摩擦因数明显降低。随着粗糙度的增加,粗糙峰接触比例升高,摩擦因数变大。  相似文献   

10.
Experiments were conducted on the initial stages of reciprocating sliding wear of a 9% chromium steel in an environment of carbon dioxide at temperatures in the range 200 to 550°C. At ambient temperatures of 290°C and above, an initial severe wear mode was followed by a transition to mild oxidational wear. At any given ambient temperature above 290°C, the distance of sliding required to reach such a transition was found to depend on load and mean sliding speed, although the dependency on speed was not simple. When a transition occurred, most of the surfaces were covered with a stable oxide film which consisted of an agglomerate layer of wear debris being mainly of oxide at the surface and mainly at the metal boundary. This film was supported by a work hardened layer extending for about 30 μm into the bulk of the metal. A surface model is proposed to explain the mechanism of formation of the supportive oxide layer; predictions of volume of material removed and final oxide coverage at the transition are in close agreement with experimental values  相似文献   

11.
The change between elastohydrodynamic lubrication (EHL) and hydrodynamic lubrication (HL) under a wide range of entrainment speeds and applied loads was studied using an optical EHL apparatus. A log-log scale linear relationship was demonstrated in the two lubrication regions between the film thickness and the entrainment speed (or load). A transition region can be clearly discerned between these two regions in which the film thickness no longer bears a linear relationship with the entrainment speed (or load). It is shown that a piezoviscous effect can be distinguished in the HL region by the speed exponent or the load exponent, and that relative sliding has a significant influence on the transition region.  相似文献   

12.
Experimental batches of polymer thickened greases, as well as their base and bleed-oils were tribologically characterized through film thickness measurements over a wide range of entrainment speeds on a ball-on-disc test rig using optical interferometry. The results are in agreement with previous observations of several authors. Under fully flooded conditions and low speed it was observed that thickener lumps enter the contact producing a high film thickness plateau. The transition speed at which the film thickness increases with decreasing speed is dependent on the thickener content and operating temperature. At moderate to high speeds, all the tested greases show a film thickness much higher than the base and bleed-oils, even though the bleed-oil׳s film thickness is closer to the grease׳s.  相似文献   

13.
Wet clutches operating under low velocity and high load are studied with the aim of obtaining reliable models for the torque transfer during boundary lubrication conditions. A friction model which takes temperature, speed and nominal pressure into account is developed and used with temperature calculations to be able to simulate behavior of a wet clutch working in boundary lubrication regime. Predicted torque and temperatures from the model agree well with experimental data.  相似文献   

14.
为精确分析预测某型轿车轮毂轴承的弯曲疲劳寿命,考虑轴承工作状态下游隙与油膜厚度的关系,以及温度对游隙和油膜厚度的影响,结合点接触弹流油膜厚度计算方法,精确计算其最小油膜厚度值;根据ISO提供的对Lundberg-Palmgren寿命模型修正方法,计算油膜参数和润滑剂黏度比,从而确定修正系数,建立改进的寿命模型。为了验证改进模型的正确性,使用旋转弯曲疲劳寿命试验机进行疲劳试验,试验结果在误差合理区间内,证明研究模型的可靠性。建立轮毂轴承载荷分布分析模型,讨论中心距对最大滚动体载荷的影响,研究轮毂轴承的疲劳寿命在不同纯弯矩载荷和不同车速下随中心距的变化规律。结果表明:弯矩载荷是影响疲劳寿命的主要因素,增加中心距可以延长轴承寿命;轴承润滑条件与轴承转速有关,在一定范围内,转速越高,其内部润滑越充分,使用寿命越长。  相似文献   

15.
A wide range of literature has been published in the period 1950–2000 concerning emerging concepts relating to the action mechanisms of boundary lubrication additives. Some of the details of these additives in terms of chemical nature, surface adsorption, surface film generation, thermal stability, thermodynamics of contact surfaces, and rise in surface temperature, as reported in this literature, are reviewed in the present paper. It has been observed that the chemical constituents of boundary lubrication additives, particularly of organosulphur and organosulphur—phosphorus origin, are very complex in nature and no comprehensive details are readily available. Regarding action mechanisms, different researchers have suggested different mechanisms for different conditions. However, information on the thermodynamics of surfaces and thermal stability of additives is not readily available. Other details, such as the effect of sliding speed, operating load, surface roughness, and material design, are not covered in this paper. Overall, the literature reveals that attempts to correlate additive characteristics with boundary lubrication activity have met with limited success, and efforts aimed at achieving ever‐increasing performance levels are continuing. In this first part, the authors examine the chemical nature of boundary lubrication additives, the surface films produced, and surface temperature.  相似文献   

16.
This article reports a parametric analysis of rolling–sliding line contacts in boundary and near-boundary lubrication with relevance to the contacts in rotorcraft drive systems in loss of lubrication. A recently developed mathematical model for boundary lubrication with friction, temperature, and tribochemistry is used in the analysis. The parameters studied include radius of the line contact, surface hardness, boundary film shear strength, fluid–solid load sharing, system bulk temperature, load, speed, and slide-to-roll ratio. The contact condition is measured by the temperature and friction power intensity along with the boundary film integrity and mode of deformation. The results of the analysis led to a number of suggestions and elaborations listed in the Conclusion regarding various design considerations of the contacts in rotorcraft drive systems against loss of lubrication.  相似文献   

17.
The present study extends the full numerical EHL solution to wide parameter ranges that cover practical and severe operating conditions commonly found in heavy-duty components. This article is the fourth part of the present study, and is focused on the effect of material properties on the film thickness, following three previous papers that investigated the effects of speed, load, and contact geometry, respectively. In this article, the pressure-viscosity coefficient is varied in a range from zero to 72.8 GPa?1 and the elastic modulus from 80 to 400 GPa, sufficiently wide to cover different materials and lubricants commonly used in industries. More than 500 cases have been analyzed, and results show that in the extended parameter ranges the relationships between the material properties and the film thickness still primarily follow the simple power rules proposed by the conventional EHL theory. However, the exponents in the power-law functions no longer appear to be constants. They are indeed functions of speed and load. For the relationship between the pressure-viscosity coefficient and the central film thickness, the exponent appears to be quite close to 0.53 proposed by the Hamrock-Dowson formula if the speed and the load are moderate. When the speed is low and/or the load is heavy, this exponent may be considerably greater. The same trend is observed for the relationship between the elastic modulus and the film thickness. At moderate loads and speeds, the exponent is close to ?0.073, which is used in the Hamrock and Dowson formula. When the speed is decreased and/or the load increased, the exponent may become positive. It is found, in addition, that the exponents in these relationships are only weakly affected by contact ellipticity.  相似文献   

18.
This paper summarizes the results of scuffing tests performed on AMS 6260 steel disks, covering three oils (a MIL-L-7808G oil, a MIL-L-23699A oil, and a straight mineral oil), two oil supply temperatures, a variety of sliding and sum velocities, and two modes of operating the test disks such that the potential failure sites on the disk surfaces either do or do not synchronize precisely in repeated cycles of operation. It is shown that, under otherwise comparable situations, (a) different oil-steel combinations allow the operation to penetrate by different degrees into the boundary lubrication regime before scuffing occurs, (b) an increase in the sliding velocity, at constant sum velocity, decreases the scuff failure load and the critical temperature, (c) an increase in the sum velocity, at constant sliding velocity, increases the scuff failure load and the critical temperature, (d) the effect of changing the sliding velocity or sum velocity, at a constant sliding-to-sum velocity ratio, depends on the balance of the opposing effects of sliding ans sum velocities at the particualar velocity ratio of interest, and (e) the scuff failure load and the critical temperature are markedly increased when the potential failure sites on the disk surfaces do not precisely synchronize on repeated cycles of operation.It is further demonstrated that the variations of the oil film thickness at scuffing, the coefficient of friction at scuffing, and the critical temperature with respect to all surface and operating variables correlate satisfactorily with a dimensionless parameter ξf.  相似文献   

19.
离心脱开型超越离合器是航空传动系统中的重要部件,具有低速楔合传动、高速离心脱开的特性,使离合器在不同工作模式下接触载荷与转速呈不同的关系,因此需针对不同工况下离心脱开型超越离合器弹流润滑性能进行分析.建立离心脱开型超越离合器弹流润滑模型,采用多重网格分析方法进行数值求解,分析进油温度与速度对超越离合器弹流润滑性能的影响...  相似文献   

20.
Dong Zhu 《摩擦学汇刊》2013,56(4):540-548
Elastohydrodynamic Lubrication (EHL) has been given great attention in the last 40 years. Conventional theories by Dowson and Higginson for line contacts and Hamrock and Dowson for point contacts have been among the most important contributions and widely used in industries. However, commonly used film thickness formulae, developed more than 25–40 years ago when the computational power was very limited, were originally from curve-fitting based on limited numbers of numerical solutions obtained in relatively narrow parameter ranges. Actual operating conditions in typical engineering applications, such as gears, bearings, cams and traction drives, sometimes fall far outside those parameter ranges, and prediction through extrapolation is often difficult to give satisfactory results. As the computer technology and numerical simulation methods have been advancing greatly, one can now analyze cases in extended parameter ranges that cover various practical applications under severe conditions. This paper is Part I of a recent study, focusing on the speed effect on the EHL film thickness. In a relatively narrow speed range, the present results agree well with those from the conventional theory. In the extended speed and load ranges, however, the relationship between the film thickness and the rolling speed may no longer obey the simple power law described by the conventional theory. It appears to be a complicated function of speed, load and contact ellipticity. Commonly used formulae may often overestimate the film thickness especially when the load is heavy and the speed is not high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号