首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. J. Yang 《摩擦学汇刊》2013,56(3):369-375
The integrated adhesive wear model tokes into account both the transient wear and the steady-state wear in wear testing. The transient wear volume is described by an exponential equation while the steady-state wear by a revised Archard's equation. In this study, the integrated wear model was used to analyze experimental wear data obtained previously for an A6061-T6 alloy and MMC-D, an aluminium alloy matrix composite containing 20% spherical alumina particles. Two loads of 7.5 kgf and 10.0 kgf, and a speed of 4.58ms?1 were used in conducting the experiments. Both the standard wear coefficient and the net steady-state wear coefficient values for both types of materials were determined. On the average, the average standard steady-state wear coefficient, as compared with the net steady-state wear coefficient, was about 52% higher for MMC-D and 246% higher for A6061-T6. A higher load was found to have the effect of increasing the wear coefficient values.  相似文献   

2.
The friction and specific wear rate of sustainable kenaf fiber–reinforced polyurethane composites were investigated against stainless steel counterface and under wet contact conditions. The new composites were evaluated at different applied loads (50–80 N), sliding distances (up to 2.7 km), and fiber mat orientations. Scanning electron microscopy (SEM) was used to observe the damage features on the worn surfaces. The results revealed that sustainable kenaf fibers assisted in enhancing the wear and frictional performance of the polyurethane thermoplastic composite by about 59 and 90%, respectively. Operating parameters and mat orientation controlled the wear and the frictional behavior of the composite. Better wear performance was exhibited at high loads and when the fiber mats were oriented perpendicularly to the sliding direction. Observations of the worn surfaces revealed different features of damage such as microcracks, fiber tearing, fiber detachment, and delamination. However, there was no trace of fiber pull-out in any of the tested conditions.  相似文献   

3.
基于对磨损影响因素拓展分析的所悟,并依据“相容性”理论,率先尝试改铸锡青铜注塑机拉杆衬套为钢背内衬巴氏合金衬套,在SZ-4000型塑料注射成型机上进行了500h工况对比实验,实验结果表明,解决磨损问题不能仅局限在对抗磨材料的研制与单纯提高材料的硬度;提出了摩擦副偶件间材质硬度差值的大小及表面粗糙度的匹配也是问题关键的观点。  相似文献   

4.
A new approach for adhesive wear modeling based on physical principles that eliminate the use of any empirical wear coefficient has been presented. The model predicts dimensionless volume of a potential wear particle that can be detached from an elastic-plastic sphere in contact with a rigid flat at sliding inception. An explicit relation between the dimensionless potential wear volume, material properties, and dimensionless normal load is obtained. An empirical expression for predicting wear coefficient which depends on the normal load and material properties is also presented. Some recommendations for a dynamic modeling to allow actual detachment of wear particle rather than prediction of a potential wear particle are indicated.  相似文献   

5.
The dry sliding wear of a medium carbon steel with different microstructures was measured under the normal load range of 50–150 N at 400°C by a pin-on-disc high-temperature wear setup. The wear behavior and wear mechanism were systematically studied; in particular, the characteristics of extrusive wear and the transition of wear mechanisms were investigated. Under low normal loads, the wear is oxidative type wear. Once the normal load reached a critical value, a mild-to-severe wear transition occurred, and subsequently an extrusive wear prevailed. The mild-to-severe wear transition depended on the microstructure of matrix; the critical normal load of the transition was 112.5 N for tempered sorbite, 125 N for lamellar pearlite, and 137.5 N for tempered martensite and tempered troostite. As oxidative wear prevailed, a thick oxide layer about 20–30 μ m and a plate-like wear debris with regular outline were recognized. However, as the extrusive wear occurred, the wear rate abruptly increased but the friction coefficient was reduced. The extrusive wear predominated due to thermal softening of the matrix and presented a superthin oxide layer (less than 0.5 μ m) and low oxide content on worn surfaces, accompanied by the appearance of ribbon-like wear debris.  相似文献   

6.
The reduction of abrasive and scuffing wear between aluminum and cast-iron wear-pairs is an important goal for the automotive industry given the implications for improved engine performance and reliability. Hypereutectic aluminum-silicon alloys such as B390 may help lead the way towards this goal because of their potential for wear resistance and durability. Yet, despite this potential, B390 has not been evaluated under the severe reciprocating conditions typical of automotive applications. Moreover, the influence of various manufacturing and processing steps on the resulting wear resistance of the alloy has not been studied at all. To help fill this void, a series of unlubricated tests were conducted using cast, spray-formed, spray-formed then extruded, and semi-solid formed variations of B390 reciprocated against gray cast-iron under a constant contact-stress. Originally, the weight-loss per reciprocating distance was measured and converted to volume-loss to determine the steady-state wear rates for each alloy variation. However, it was determined that debris from the mating cast-iron surface was adhering to the B390 and obscuring the actual material lost to wear. To compensate for the trapped iron debris, the volume-loss was directly calculated from the changing contact area or “flat” originally measured for the loading adjustments. After this correction, the data indicated that the spray-formed, spray-formed then extruded, and semi-solid formed all experienced measurable, albeit modest decreases in their wear rates relative to the cast B390. However, there were not any significant disparities in the observed wear rates between the spray-formed, spray-formed then extruded, and semi-solid formed hypereutectic alloy despite their processing and microstructural differences.  相似文献   

7.
The investigated slow sliding speeds presented in this work enable the understanding of the wear behavior on aluminum alloys and could possibly facilitate the completion of the previously proposed wear mechanism map for aluminum at this slow sliding speed range. Dry sliding block-on-ring wear tests were carried out on aluminum alloys, AA5754 (Al-Mg), AA6082 (Al-Mg-Si), and AA7075 (Al-Zn-Cu), at a very slow sliding speed range (<0.01 m/s). A bearing steel ring of AISI 52100 was used as the counterbody. Tests were performed at varying contact pressures, 20, 100, and 140 MPa, and sliding speeds ranging from 0.001 to 1.5 m/s. The wear tracks and debris collected were examined by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD), with the aim of analyzing their morphology and composition. At relatively slow sliding speeds (>0.01 m/s), the specimens exhibited a wear process placed at the mild wear regime, characterized by oxidation and delamination mechanisms of both the aluminum specimen and the steel ring. However, at very slow speed range (<0.01 m/s), an increase in the wear rate and the friction coefficient is observed for all of the aluminum alloys, thus suggesting that an alternative wear mechanism could be taking place.  相似文献   

8.
Cylindrical roller bearings are being developed which can operate over 300°C and greater than three million DN for innovative gas-generators. Under such severe conditions, it is necessary for retainers to be frictionless, lightweight and strong. After preliminary testing, SiC particle reinforced aluminum alloy composite appeared to have good friction and wear properties. It's specific gravity is about one-third of the present material in use, silver-coated SAE4340. In the course of the study, two different friction and wear tests were conducted to investigate the optimum volume fraction of SiC. The results indicated that the most efficient volume fraction was 20vol%. The tensile strength of Al-20vol%SiC was about 140MPa at 300°C. Based on the results of FEM analysis, 140MPa is considered sufficient to endure any stress concentration caused by tensile hoop stresses up to four million DN.  相似文献   

9.
The wear rates and wear coefficients of metals are analytically predicted based on the delamination theory of wear when the wear rates are controlled by the subsurface crack propagation rate. The wear rate and the wear coefficient are predicted to be directly proportional to the depth of crack location and the crack growth rate. The numerical values of wear coefficients are obtained through finite element analysis of crack propagation in elastoplastic solids. The agreement between typical experimental results and theoretical prediction is excellent.  相似文献   

10.
A comparative study of the wear behaviors of a selected titanium alloy and AISI H13 steel as a function of temperature and load was performed on a high-temperature wear tester. The titanium alloy and H13 steel presented totally different wear behaviors with the variation in temperature and load. Their behaviors are suggested to be attributed to the protective ability of tribo-oxides and the thermal softening resistance of the matrix. Compared to H13 steel, the titanium alloy presented poor room-temperature wear resistance, excellent high-temperature wear resistance, and an extremely protective function of tribo-oxides.  相似文献   

11.
The influence of hybrid reinforcements including silicon carbide and graphite particles with a size 37–50 μm on the wear characteristics of AZ91 magnesium alloy was studied. The dry sliding wear test was conducted using a pin-on-disc wear testing machine in the load range of 20 to 80 N at different sliding velocities in the range of 1.047 to 2.618 m/s. The results show that the wear resistance of composites was much better than that of the base matrix material under the test conditions. At a speed of 1.047 m/s and load of 40 N, the wear rate (mm3/km) of the unreinforced alloy was 6.3, which reduced to 3.8 in the case of 3% reinforced composite. The antiwear ability of magnesium alloy composite was found to improve substantially with the increase in silicon carbide and graphite content from 1 to 3% by weight and the wear rate was found to decrease considerably. At a speed of 1.047 m/s and load of 80 N, the wear rate (mm3/km) reduced from 11.8 to 9.1 when the reinforcement content increased from 1 to 3%. However in both the unreinforced alloy and reinforced composite, the wear rate increased with the increase in load and sliding velocity. An increase in the applied load increases the wear severity by changing the wear mechanism from abrasion to particle cracking-induced delamination. The worn surface morphologies of the composite containing 3% reinforcement by weight for the sliding velocity of 1.047 m/s were examined using scanning electron microscopy. Different wear mechanisms, namely, abrasion, oxidation, and delamination, have been observed.  相似文献   

12.
Experimental investigations were undertaken to determine the abrasive wear behavior of various percentages of Cu-SiC-Gr hybrid composites. Wear tests were carried out using a pin-on-disc type machine using various input parameters like load, sliding distance, and sliding velocity with various SiC abrasive papers of grit size 80, 220, and 400, having an average particle size of 192, 102, and 45 μm. Neural networks are employed to study the tribological behavior of sintered Cu-SiC-Gr hybrid composites. Optical microscope, scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive spectral observations are used to evaluate the characteristics. The proposed neural network model used the measured parameters, namely, the weight percentage of graphite, abrasive size, sliding speed, load, and sliding distance, to predict the wear loss of the composite. In order to improve the accuracy and obtain better results, an artificial neural network (ANN) with a genetic algorithm (GA) function was used. Optimization of the training process of the ANN using a GA is performed and the results are compared with the ANN trained without a GA. The predicted values from the proposed networks coincide with the experimental values.  相似文献   

13.
Most carbon-type seal materials contain graphitic carbon as the minor constituent. Materials having graphite carbon as the major constituent were studied as possible seal materials at 10,000 feet per minute sliding velocities, in most experiments the temperature of the mating surfaces was 500°F. Carbon materials made graphitic by electro-graphitization were too soft; they gave high wear and high friction. Bodies molded with high-graphite-content materials and made hard by improved molding methods and impregnation gave acceptable friction and wear properties.

When a hardenable stainless steel was used, the effect of varied hardness of mating surface on wear of typical carbon was slight. Within a limited range, roughness of mating surface is not important to wear of carbons.  相似文献   

14.
One of the major causes of tool failure in sheet metal forming is wear in the form of galling. Galling is gradual buildup of adhered sheet material on the tool and leads to unacceptable scratches on the sheet surface and to components that fail to meet tolerances. Because it is difficult to reproduce operational and interactional conditions in laboratory test equipments it is hard to test, model, and predict galling initiation.

Here the authors examine how changes from elliptical to line contact geometry influenced galling initiation under dry sliding by using a slider-on-flat surface (SOFS) wear tester. A micro clean tool steel was tested against ferritic low-strength and martensitic high-strength steel sheets.

The sliding distance to galling initiation was extracted from friction data and verified by scanning electron microscopy (SEM) observations. The presence of adhesive wear on worn tools after completed tests was used as a criterion. Experimental results showed that the elliptical contact causes galling quicker than the line contact.

Applicability of experimental results depends on the relevance of test conditions, so contact pressures calculated for the described tests were compared to calculated contact pressures in a semi-industrial U-bending test and to literature data relevant to industrial applications. Good agreement between values observed for SOFS and for most selected industrial applications was found, which assume that contact pressures typical for most common industrial applications can be successfully simulated by selection of tool geometry and normal load in the SOFS tester.  相似文献   

15.
概述了聚四氟乙烯(PTFE)基自润滑改性复合材料的摩擦磨损性能研究新进展。讨论了纤维增强、无机填充、有机共混和离子注入表面改性复合材料的摩擦学性能以及PTFE基改性复合材料在铁路机械中的应用。  相似文献   

16.
用铸造法制备了SiC_p/ZA27复合材料,用MM200磨损试验机,测定和对比了基体合金和不同颗粒含量复合材料在不同载重下滑动摩擦的磨损量,结果表明:在重载条件下,复合材料的耐磨性远高于基体材料。此外.还初步分析了不同条件下的磨损机理。  相似文献   

17.
In the present study, the dry sliding wear behavior of rheocast A356 Al alloys, cast using a cooling slope, as well as gravity cast A356 Al alloy have been investigated at a low sliding speed of 1 ms?1, against a hardened EN 31 disk at different loads. The wear mechanism involves microcutting–abrasion and adhesion at lower load for all of the alloys studied in the present work. On the other hand, at higher load, mainly adhesive wear along with oxide formation is observed for gravity cast A356 Al alloy and rheocast A356 Al alloy, cast using a 45° slope angle. Unlike other alloys, 60° slope rheocast A356 Al alloy is found to undergo mainly abrasive wear at higher load. Accordingly, the rheocast sample, cast using a 60° cooling slope, exhibits a remarkably lower wear rate at higher load compared to gravity cast and 45° slope rheocast samples. This is attributed to the dominance of abrasive wear at higher load in the case of rheocast A356 Al alloy cast using a 60° slope. The presence of finer and more spherical primary Al grain morphology is found to resist adhesive wear in case of 60° cooling slope processed rheocast alloy and thereby delay the transition of the wear regime from normal wear to severe wear.  相似文献   

18.
In the current work, the effects of treating the oil palm fibres on the tribological performance of polyester composite were studied against polished stainless steel counterface using Block-on-Ring (BOR) technique under dry contact condition. Wear and friction characteristics of treated and untreated oil palm fibre reinforced polyester (T-OPRP and UT-OPRP) composites were evaluated at different sliding distances (0.85–5 km), sliding velocities (1.7–3.9 m/s) and applied loads (30–100 N). SEM observations were performed on the worn surfaces of the composites to examine the damage features. Specific wear rate (Ws), friction coefficient and interface temperature results were presented against the operating parameters. The results revealed that test parameters significantly influenced the wear performance of the composites. Both treated and untreated oil palm fibres enhanced the wear and frictional performance of polyester composites. T-OPRP showed less Ws by about 11% compared to UT-OPRP. This was due to the better interfacial adhesion offered by the treated fibres. The SEM observation made on UT-OPRP worn surface showed debonding and bending of fibres, and fragmentation and deformation on the resinous regions. Meanwhile, T-OPRP composite showed less damages compared to UT-OPRP, where no sign of fibres debonding was observed.  相似文献   

19.
本文研究了SiC_p/ZA65复合材料的高温耐磨性能,并与ZA27合金进行对比.结果表明,在高温干摩擦情况下,SiC_p/ZA65复合材料的耐磨性远优于ZA27合金.  相似文献   

20.
采用盘销式摩擦磨损试验机,对SiCp含量为20vol%的铝基复合材料和Kevlar增强摩擦材料组成的摩擦副在于摩擦条件下的摩擦磨损机理进行了实验研究。结果表明:摩擦副在跑合过程中,铝基复合材料中的SiCp颗粒对较软的有机复合材料产生犁削和微观切削效应,磨损机理为铝基复合材料的硬质颗粒对较软的有机复合材料的磨粒磨损;在跑合后的磨损试验中,摩擦材料磨损表面呈现出粘着磨损和塑性变形特征,随着转动速度的增加,塑性流动加剧;摩擦副接触表面发生材料的相互转移,并在铝基复合材料表面形成转移膜,且在较高速度下转移膜更易形成;在高速条件下,摩擦材料表面可见从铝基复合材料的铝合金基体中脱离的SiCp颗粒和熔融迹象;摩擦材料的磨损机理主要为磨粒磨损、粘着磨损和塑性变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号