首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Wear》2007,262(3-4):262-273
The objective of the present investigation was to assess the influence of SiC particle dispersion in the alloy matrix, applied load, and the presence of oil and oil plus graphite lubricants on the wear behaviour of a zinc-based alloy. Sliding wear performance of the zinc-based alloy and its composite containing SiC particles has been investigated in dry and lubricated conditions. Base oil or mixtures of the base oil with different percentages of graphite were used for creating the lubricated conditions. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloys. It was also observed that there exists an optimum concentration of graphite particles in the lubricant mixture that leads to the best wear performance. The composite experienced higher frictional heating and friction coefficient than the matrix alloy in all the cases except oil lubricated conditions; a mixed trend was noticed in the latter case. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.Examination of worn surfaces revealed a change of predominating wear mechanisms from severe ploughing and/or abrasive wear for base alloy to delamination wear for the reinforced material under dry sliding conditions. The presence of the lubricant increased the contribution of adhesive wear component while reducing the severity of abrasion. This was attributed to the generation of more stable lubricant films on the contacting surfaces. Cross-sections of worn surfaces indicated substantial wear-induced plastic deformation, thereby suggesting adhesive wear to be a predominant wear mechanism in this study. The debris particles revealed deformed flakes and machining chips signifying the involvement of adhesion and abrasion modes of wear respectively.  相似文献   

2.
This paper reports the tribological behavior of CaCO3 nanoparticles as a green additive in poly-alpha-olefin (PAO) base oil under variable applied load, sliding speed, sliding duration, and temperature. The tribological properties and the electrical contact resistance between the tribo-pairs lubricated with PAO alone, and PAO containing CaCO3 nanoparticles, were determined using an Optimol-SRV 4 oscillating friction and wear tester (SRV). The morphology and wear volume of the worn scar were measured simultaneously using a surface profilometer. The results showed that CaCO3 nanoparticles can dramatically improve the load-carrying capacity, as well as the anti-wear and friction-reduction properties of a PAO base oil. In addition, higher applied load, moderate frequency, longer duration time, and lower temperatures are beneficial to the deposition of CaCO3 nanoparticles accumulating on rubbing surfaces. X-ray photoelectron spectroscopy (XPS) reveals a boundary film composed of CaCO3, CaO, iron oxide, and some organic compounds on the worn surfaces.  相似文献   

3.
自补偿摩擦表面微观形貌分析   总被引:5,自引:0,他引:5  
莫易敏  邹岚 《机械科学与技术》1998,17(3):458-460,463
进行了钢-铜摩擦副的原始表面、常规润滑油和自补偿滑油润滑下的表面微观形貌测试和分析;对自补偿润滑下和常规润滑下钢、铜表面的粗糙度和表面轮廓特征参数进行了比较;研究了载荷、摩擦行程对自补偿润滑下钢、铜表面微观形貌的影响;得出了钢-铜摩擦副的磨损在一定范围内与载荷无关、其磨损不随摩擦行程线性增加、自补偿添加剂SW4更适应于重载工况和经过大的摩擦行程后仍起作用等结论。  相似文献   

4.
The tribological behaviour of a rare earth naphthenate (REN) as a lubricant oil additive in VG26 white oil and the complexes of REN and organo‐sulphur or organo‐phosphate compounds have been evaluated with a four‐ball friction and wear tester. The chemical features and elemental composition of the boundary lubricating film were examined by means of Auger electron spectroscopy (AES) and X‐ray photoelectron spectrometry (XPS). The results show that REN exhibits good antiwear, load‐carrying, and friction‐reducing properties in the base stock. When 2.0% REN is added, the wear‐scar diameter value reduces to 54.7% of that for the base stock alone and the maximum non‐seizure load increases 2.95 times. A synergistic effect is found for the load‐carrying capability of the complex of REN and organo‐sulphur while poor compatibility is exhibited for the complex of REN and organo‐phosphate. The analytical results of AES and XPS indicate that the good performance of REN is attributable to the formation of a boundary lubricating film mainly composed of naphthenic acid, rare earth oxide, and complexes of rare earth metals, which is formed on a rubbed surface when lubricated by oil containing the REN additive.  相似文献   

5.
S. Jahanmir 《Wear》1985,103(3):233-252
Experimental results and observations by scanning electron microscopy have demonstrated that the process of wear particle formation under lubricated sliding conditions is greatly affected by the tangential stress. In these experiments, the normal load was kept constant and the tangential stress was varied by changing the friction coefficient using different friction-reducing additives in the base oil. The predominant wear mechanism is related to the magnitude of friction coefficient attained by the friction modifier. The wear rate and the level of surface damage are greatly reduced if the friction coefficient is lower than a specific threshold value. Under these conditions wear particles are formed from deformation of surface asperities. At higher friction coefficients more wear was observed to occur by the process of plowing and delamination (i.e. subsurface microvoid and crack formation). Under severe wear conditions and lubrication failure, extremely large amounts of wear and severe surface damage result from the adhesive wear mechanism (i.e. material transfer across the contact surface).  相似文献   

6.
Abstract

Ball on disc tribometer and atomic force microscopy (AFM) were used to analyse the effect of base oil polarity on the friction behaviour of steel–steel contacts lubricated with base oil + zinc dialkyldithiophosphate (ZDDP) solutions. Understanding the lubrication properties of the first chemisorbed layer of additives on work pieces yields important information for the optimisation of lubricant formulation, in particular with regard to the type of additive and amount needed. To characterise the influence of base oil polarity, two reference base oils [hexadecane (non–polar) and diethylenglycol (polar)] were blended with different concentrations of C4-ZDDP, and the solutions were tested. A monolayer of base oil/additive solution was deposited on an ASI 52100 steel plate and scanned in AFM contact mode under various rubbing times and applied load conditions. An AFM technique was developed to estimate the microscopic values of friction coefficients showing how the oil polarity contributes to the differences in friction behaviour of the solution due to the addition of ZDDP. With different base oils [(hexadecane (non-polar base oil) and diethylenglycol (polar oil)] the authors observed significant different friction behaviours (in micro scale and nano scale) due to the addition of ZDDP compared to the base oil alone. This observation may be attributed to the contribution of base oil to transport the ZDDP additive onto the surface which will be discussed in more details in the paper. These results display the importance of base oil polarity on the friction behaviour of formulated lubricants containing additives.  相似文献   

7.
The investigation of lubricated friction and wear is an extended study. The aim of this study is to investigate the friction and wear characteristics of double fractionated palm oil (DFPO) as a biolubricant using a pin-on-disk tribotester under loads of 50 and 100 N with rotating speeds of 1, 2, 3, 4, and 5 ms?1 in a 1-h operation time. In this study, hydraulic oil and engine oil (SAE 40) were used as reference base lubricants. The experiment was conducted using aluminum pins and an SKD 11(alloy tool steel) disc lubricated with test lubricants. To investigate the wear and friction behavior, images of the worn surface were taken by optical microscopy. From the experimental results, the coefficient of friction (COF) rose when the sliding speed and load were high. In addition, the wear rate for a load of 100 N for all lubricants was almost always higher compared to lubricant with a load of 50 N. The results of this experiment reveal that the palm oil lubricant can be used as a lubricating oil, which would help to reduce the global demand for petroleum-based lubricants substantially.  相似文献   

8.
Time rates of wear and distance rates of wear are presented as a function of calculated oil film thickness between two cylindrical steel rollers loaded to a maximum Hertz contact stress of 300,000 psi. Wear is divided into a constant wear mode and a transient wear mode depending on the oil film thickness. A negative slope of the curve representing the distance rate of wear versus oil film thickness explains the stabilizing effect on radial surfaces. A positive slope in a narrow range of oil film thickness causes a surface instability due to wear and surface rippling occurs. Transient wear occurs at the thicker oil films. When followed by zero wear rate surface oxide films develop. The total amount worn off during the transient varies greatly with the oil film thickness when using rollers of a given surface finish. Control of oil film thickness by either velocity or viscosity changes due to tempearture produces similar wear effects.  相似文献   

9.
合成了二烷基二硫代磷酸镧/铕混合稀土有机化合物(La/EuDDP),加入到30^#齿轮油中,利用四球试验机考察了摩擦磨损性能。结果表明,La/EuDDP作为润滑油添加剂具有良好的抗磨性能和承载能力,并具有一定的减摩能力,加有该添加剂的30^#齿轮油PB值增加了128%,磨斑直径减少了50%以上。  相似文献   

10.
用MRS-10J四球摩擦磨损试验机考察了N68基础油和添加了自修复纳米铜润滑添加剂NT1的N68NT1的摩擦学性能,用扫描电子显微镜(SEM)、x射线能量色谱仪(EDS)分析了钢球表面的磨斑形貌和组成,同时初步分析了纳米铜润滑添加剂的润滑机理.结果表明:自修复纳米铜润滑油添加剂NT1能显著改善N68基础油的摩擦学性能;在载荷为296 N、392 N、490 N,试验时间为30 min的试验条件下,摩擦副的摩擦因数同基础油的相比分别下降了33.8%、39.4%和55.5%;钢球的磨斑直径分别下降了46.5%、45.6%和32.5%;同N68相比,N68NT1的pB值提高了33.3%;这可能同摩擦过程中钢球表面上沉积膜的协同作用有关.  相似文献   

11.
A systematic study has been conducted to investigate the interactions between selected chemical compounds and silicon carbide under boundary lubrication conditions. A modified four-ball wear tester was used to evaluate the additive effectiveness on silicon carbides lubricated with a paraffinic base oil containing one weight percent of additives. Friction, wear, and film morphology were observed for a range of chemical compounds containing chlorine, phosphorous, oxygen, and sulfur. Friction reduction was observed for chlorine containing compounds. At weight fraction of one percent under 40 kg load, wear reduction was obtained by all phosphorous containing compounds, polypropylene glycols, and oleic acid. At higher concentration and higher load, some sulfur containing compounds also reduced wear significantly. In general, all the effective wear reduction compounds generate films in the contact region. The films generated by phosphorous containing compounds appear to involve the iron impurity in the material.  相似文献   

12.
岳文  王成彪  田斌  刘沅东  刘家浚 《润滑与密封》2007,32(11):98-101,107
利用销盘式磨损试验机研究了一种矿物质润滑油添加剂对钢/铝锡合金摩擦副摩擦学性能的影响,并考察了这种添加剂对实际工况下铝锡合金轴瓦的作用效果。采用AFM、SEM/EDS等仪器对摩擦副表面进行了分析。结果表明,矿物质添加剂在低载荷比高载荷条件下的减摩抗磨效果明显;试验时间越长,添加剂的作用越充分,圆盘表面的Al-Sn共晶体的分布越分散,减摩效果越明显;添加剂降低了摩擦表面的粗糙度,显著地提高了摩擦副的减摩抗磨性能,延长了使用寿命;添加剂作用后的摩擦表面发现了少量的Fe元素,并发现个别添加剂粒子和磨损粒子在铝锡合金表面的镶嵌和沉积,添加剂提高了其承载能力。  相似文献   

13.
The friction and wear properties of an Al-Si alloy against AISI 52100 steel were investigated with a block-on-ring wear tester lubricated with a liquid paraffin base oil containing organic additive compounds, such as ethylenediamine, ethyleneglycol, ethanolamine, and N,N-dibutylethanolamine. The boundary film formed on the rubbed surface of the Al-Si alloy was then examined using FT-IR microscopy and XPS. The friction and wear tests revealed that ethylenediamine, ethanolamine and N,N-dibutylethanolamine additives provide good lubrication in the Al-Si alloy-on-steel system, especially N,N-dibutylethanolamine. FT-IR microscopy and XPS revealed the possible formation of a chemically stable five-ring complex of aluminium or silicon with diamine and ethanolamine.  相似文献   

14.
The tribological behaviour of oil‐lubricated steel‐alumina sliding pairs was investigated using a ball‐on‐disc tribometer at room temperature. Commercial bearing balls of 10 mm diameter were mated to 99.7% Al2O3 discs, and additive‐free mineral oil was fed into the contact area. The sliding speed and the applied normal load were varied, and the initial surface roughness of the Al2O3 disc was altered using different polishing and grinding procedures. The results showed that the surface roughness of the ceramic discs dominated the tribological behaviour under the given experimental conditions. The sliding speed as well as the normal load showed less effect on the friction behaviour, but the amount of wear depended strongly on the normal load. From the results it was concluded that improvement of the surface roughness and optimised surface machining of the ceramic material can be essential for improving the tribological performance for boundary‐lubricated steel‐ceramic sliding pairs.  相似文献   

15.
Fuel economy and reduction of harmful elements in lubricants are becoming important issues in the automotive industry. An approach to respond to these requirements is the potential use of low friction coatings in engine components exposed to boundary lubrication conditions. Diamond-like-carbon (DLC) coatings present a wide range of tribological behavior, including friction coefficients in ultra-high vacuum below 0.02. The engine oil environment which provides similar favourable air free conditions might lead to such low friction levels.In this work, the friction and wear properties of DLC coatings in boundary lubrication conditions have been investigated as a function of the hydrogen content in the carbon coating. Their interaction with ZDDP which is the exclusive antiwear agent in most automotive lubrication blends and friction-modifier additive MoDTC has been studied. Hydrogenated DLC coatings can be better lubricated in the presence of the friction-modifier additive MoDTC through the formation of MoS2 solid lubricant material than can non-hydrogenated DLC. In contrast, the antiwear additive ZDDP does not significantly affect the wear behavior of DLC coatings. The good tribological performances of the DLC coatings suggest that they can contribute to reduce friction and wear in the engine, and so permit the significant decrease of additive concentration.  相似文献   

16.
H.D. Huang  L.P. Gan 《Wear》2006,261(2):140-144
Graphite nanosheets with average diameter of 500 nm and thickness about 15 nm were prepared by stirring ball milling. The tribological behavior of the graphite nanosheets as additive in paraffin oil were investigated with a four-ball and a pin-on-disk friction and wear tester. The wear surfaces of the steel ball lubricated with the additive-containing paraffin oil were analyzed by means of scanning electron microscopy (SEM). It has been found that the graphite nanosheets as additive in oil at proper concentration show better tribological properties than pure paraffin oil. The load-carrying capacity and antiwear ability of the lubricating oil were improved. Moreover, the friction coefficient of the lubricating oil was decreased by the addition of the graphite nanosheets. The optimal concentration of the additive in paraffin oil is about 1.0 × 10−2 wt.%.  相似文献   

17.
硅酸盐粉体作为润滑油添加剂在金属磨损表面成膜机制   总被引:17,自引:4,他引:13  
在润滑油中添加蛇纹石硅酸盐粉体,采用MM-200摩擦磨损试验机研究了45#钢-45#钢摩擦副磨损表面的自修复陶瓷膜层形成机制,借助SEM及EDAX测试分析自修复陶瓷膜层的表面形貌及表面成分组成。结果表明摩擦能量对硅酸盐添加剂在磨损表面形成自修复膜层有很大的影响:自修复膜层为氧化物陶瓷材料,主要成分来自于硅酸盐添加剂。在低载荷300 N时,摩擦因数减小,硅酸盐添加剂不能转移到磨损表面,不能形成自修复膜层,仅仅起到减磨作用。下试样的失重随磨损时间增加而增加;在试验时间为20 h时,试样失重达到最大值,随后试样的失重反而减小。在载荷为600 N、900 N,试验时间30 h摩擦磨损后,在金属表面形成自修复保护膜,磨损表面比较平整光滑,无明显的片层剥落和犁沟,摩擦发生在自修复陶瓷材料之间,摩擦因数增加。硅酸盐添加剂在机械剪切作用下变形,在金属的磨损表面上铺展,并且在摩擦磨损过程中不断向摩擦表面转移,形成了均匀光滑的自修复膜层。自修复膜层隔离了金属摩擦表面的直接接触,摩擦磨损发生在自修复膜层之间,有效地降低了金属的磨损。  相似文献   

18.
合成一种新型含氮硼酸酯铝材轧制润滑油添加剂,利用四球试验机考察添加含氮硼酸酯的铝材轧制润滑油的油膜强度、摩擦因数,通过显微镜观察磨斑形貌并测量磨斑直径。利用正交试验法评估极压剂含量、基础油种类、四球试验机载荷和转速对含氮硼酸酯润滑油摩擦学性能的影响,并通过多目标优化设计,对4种参数对铝材轧制润滑油摩擦学性能的强化效果进行综合研究。结果表明:各工艺参数对油样的摩擦学性能影响显著性由大到小依次为极压剂添加量、基础油种类、转速和载荷;经过多目标优化设计,得到的含氮硼酸酯铝材轧制润滑油强化工艺参数的最佳组合:极压剂质量分数为1.0%,基础油种类为D100,载荷为294 N,转速为1 200 r/min;通过极差、方差等分析,发现极压剂添加量和基础油种类对油样的摩擦学性能有显著影响。  相似文献   

19.
本文合成了一种含硼及钾的油溶性化合物-聚合十六烷氧基硼酸钾并将其用作润滑油抗磨减摩添加剂,用四球及环块摩擦试验机研究了它的摩擦学性能.结果发现:500SN基础油的抗磨性能得到明显改善,其承载能力明显提高,摩擦系数明显降低,有—最佳添加剂含量,超过此量,油品的承载能力不升反降.将磨斑分别在石油醚及蒸馏水中用超声波清洗后用扫描电子显微镜表征,结果发现磨斑表面存在有含硼沉积物.聚合十六烷氧基硼酸钾在表面发生了摩擦化学反应,如分解、缩合等,这些反应产物形成了一层具有抗磨减摩性能的膜.  相似文献   

20.
Because the viscosities of engine and transmission lubricants are lowered in order to reduce hydrodynamic friction and thus energy consumption, it is important to ensure that wear rates do not increase and thus machine durability is not impaired. In practical terms this means that we require reliable methods for measuring the mild wear rates present in most lubricated machine components.

This article compares three mild wear reciprocating laboratory tests, one based on the high-frequency reciprocating rig (HFRR) and two on the mini-traction machine (MTM), in order to explore the extent to which wear rate is determined by the test configuration. The results show that some additive-containing lubricants including blends of antiwear additive and dispersant give quite consistent wear rates, independent of whether the surface is in continuous or intermittent contact, whereas others such as two friction modifiers do not. Possible reasons for these differences are discussed. The importance of accounting for wear during running-in and the need to remove any thick tribofilms present before quantifying wear volume are also confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号