首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important objective of next-generation wireless networks is to provide quality of service (QoS) guarantees. This requires a simple and efficient wireless channel model that can easily translate into connection-level QoS measures such as data rate, delay and delay-violation probability. To achieve this, in Wu and Negi (IEEE Trans. on Wireless Communications 2(4) (2003) 630–643), we developed a link-layer channel model termed effective capacity, for the setting of a single hop, constant-bit-rate arrivals, fluid traffic, and wireless channels with negligible propagation delay. In this paper, we apply the effective capacity technique to deriving QoS measures for more general situations, namely, (1) networks with multiple wireless links, (2) variable-bit-rate sources, (3) packetized traffic, and (4) wireless channels with non-negligible propagation delay. Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. From July 1997 to December 1999, he conducted graduate research at Polytechnic University, Brooklyn, New York. During the summers of 1998, 1999 and 2000, he conducted research at Fujitsu Laboratories of America, Sunnyvale, California, on architectures and traffic management algorithms in the Internet and wireless networks for multimedia applications. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001. Currently, he is an Associate Editor for the IEEE Transactions on Vehicular Technology and Associate Editor for International Journal of Ad Hoc and Ubiquitous Computing. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as TPC member of over 20 conferences such as IEEE INFOCOM'05, IEEE ICC'05, IEEE WCNC'05, and IEEE Globecom'04. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. He is also Director of Communications, IEEE Gainesville Section. Rohit Negi received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, India in 1995. He received the M.S. and Ph.D. degrees from Stanford University, CA, USA, in 1996 and 2000 respectively, both in Electrical Engineering. He has received the President of India Gold medal in 1995. Since 2000, he has been with the Electrical and Computer Engineering department at Carnegie Mellon University, Pittsburgh, PA, USA, where he is an Assistant Professor. His research interests include signal processing, coding for communications systems, information theory, networking, cross-layer optimization and sensor networks.  相似文献   

2.
Fixed wireless schemes are increasingly being used for broadband access, and maximising the spectrum efficiency is an important concern for these applications. However, the fixed wireless access environment differs from the more widely studied mobile cellular case, and the optimum algorithms for achieving high spectrum efficiencies are different, since intercell handoff and fast fading are in many cases not significant concerns. We show that the use of intracell handoffs in this environment can provide capacities in excess of any scheme that does not use 100% frequency re-use. Further, we show that previously reported optimum schemes concerning the use of adaptive modulation and coding, channel selection and power control have to be modified when intracell handoffs are considered.Dave Pearce is a lecturer in the Communications Group, Department of Electronics, at the University of York in England. He received the BA degree in 1985 from the University of Cambridge, and a PhD in 2001 from the University of York. He has led projects in fields from radio propagation to transport layer protocol issues, with current research interests in the interaction between radio resource allocation algorithms and higher-level protocols, and in particular the use of traffic shaping to enhance spectrum efficiency.  相似文献   

3.
To efficiently support quality of service (QoS) in future wireless networks, it is important to model a wireless channel in terms of connection-level QoS metrics such as data rate, delay and delay-violation probability. To achieve this, in [7], we proposed and developed a link-layer channel model termed effective capacity (EC) for flat fading channels. In this paper, we apply the effective capacity technique to modeling frequency selective fading channels. Specifically, we utilize the duality between the distribution of a queue with superposition of N i.i.d. sources, and the distribution of a queue with a frequency-selective fading channel that consists of N i.i.d. sub-channels, to model a frequency selective fading channel. In the proposed model, a frequency selective fading channel is modeled by three EC functions; we also propose a simple and efficient algorithm to estimate these EC functions. Simulation results show that the actual QoS metric is closely approximated by the QoS metric predicted by the proposed EC channel model. The accuracy of the prediction using our model can translate into efficiency in admission control and resource reservation. Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. From July 1997 to December 1999, he conducted graduate research at Polytechnic University, Brooklyn, New York. During the summers of 1998, 1999 and 2000, he conducted research at Fujitsu Laboratories of America, Sunnyvale, California, on architectures and traffic management algorithms in the Internet and wireless networks for multimedia applications. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001. Currently, he is an Associate Editor for the IEEE Transactions on Vehicular Technology and Associate Editor for International Journal of Ad Hoc and Ubiquitous Computing. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as TPC member of over 30 conferences. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Best Paper Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. He is also Director of Communications, IEEE Gainesville Section. Rohit Negi received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, India in 1995. He received the M.S. and Ph.D. degrees from Stanford University, CA, USA, in 1996 and 2000 respectively, both in Electrical Engineering. He has received the President of India Gold medal in 1995. Since 2000, he has been with the Electrical and Computer Engineering department at Carnegie Mellon University, Pittsburgh, PA, USA, where he is an Associate Professor. His research interests include signal processing, coding for communications systems, information theory, networking, cross-layer optimization and sensor networks.  相似文献   

4.
Under heterogeneous radio conditions, Wireless LAN stations may use different modulation schemes, leading to a heterogeneity of bit rates. In such a situation, 802.11 DCF allocates the same throughput to all stations independently of their transmitting bit rate; as a result, the channel is used by low bit rate stations most of the time, and efficiency is low. In this paper, we propose a more efficient throughput allocation criterion based on proportional fairness. We find out that, in a proportional fair allocation, the same share of channel time is given to high and low bit rate stations, and, as a result, high bit rate stations obtain more throughput. We propose two schemes of the upcoming 802.11e standard to achieve this allocation, and compare their delay and throughput performance. Albert Banchs received his M.Sc. and Ph.D. degrees in Telecommunications from the Technical University of Catalonia in 1997 and 2002, respectively. His Ph.D. received the national award for best thesis on Broadband Networks granted by the Professional Association of Telecommunication Engineers. He worked for the International Computer Science Institute, Berkeley, in 1997, for Telefonica I+D, Madrid, in 1998 and for NEC Network Laboratories, Heidelberg, from 1998 to 2003. Since 2003 he is with the University Carlos III of Madrid. Dr. Banchs is Associate Editor of IEEE Communications Letters and has been TPC member of several conferences and workshops including INFOCOM, ICC, GLOBECOM and QoS-IP. His current research interests include resource allocation, QoS and performance evaluation of wireless and wired networks. Pablo Serrano was born in Tarifa, Spain, on May 17, 1979. He received a M.Sc. degree in Telecommunications from the University Carlos III of Madrid in 2002. Since that date he is a Ph.D. candidate and a lecturer at the Telematics Department of the same university. His current research interests are performance evaluation and resource allocation of WLAN networks. Huw Edward Oliver received his MA degree in Mathematics at Cambridge University (1980), and his MSc (1985) and PhD (1988) in Computer Science at the University College of Wales, Aberystwyth. He joined Hewlett-Packard Laboratories, Bristol in 1989 to work on Software Development Environments. Following a period at HP’s Software Engineering Systems, Colorado in 1992 he returned to HP Labs in 1993 as Senior Member of Technical Staff and worked on real-time fault tolerant telecommunication systems. From 1997 to 2000 he was appointed Manager of Hewlett-Packard’s Internet Research Institute. He worked as Technical Director of the European MMAPPS Project from 2000 to 2002, as Senior Research Fellow at Lancaster University from 2002 to 2004, and as Visiting Professor at University Carlos III of Madrid from 2004 to 2005. Since 2005 he has been Senior Researcher with Ericsson R&D Ireland, Athlone where he is responsible for the next-generation network management architecture.  相似文献   

5.
Cooperative-diversity slotted ALOHA   总被引:1,自引:0,他引:1  
We propose a cooperative-diversity technique for ad hoc networks based on the decode-and-forward relaying strategy. We develop a MAC protocol based on slotted ALOHA that allows neighbors of a transmitter to act as relays and forward a packet toward its final destination when the transmission to the intended recipient fails. The proposed technique provides additional robustness against fading, packet collisions and radio mobility. Network simulations confirm that under heavy traffic conditions, in which every radio always has packets to send, the proposed cooperative-diversity slotted-ALOHA protocol can provide a higher one-hop and end-to-end throughput than the standard slotted-ALOHA protocol can. A similar advantage in end-to-end delay can be obtained when the traffic is light. As a result, the proposed cooperative-diversity ALOHA protocol can be used to improve these measures of Quality of Service (QoS) in ad hoc wireless networks. John M. Shea (S’92–M’99) received the B.S. (with highest honors) in Computer Engineering from Clemson University in 1993 and the M.S. and Ph.D. degrees in electrical engineering from Clemson University in 1995 and 1998, respectively. Dr. Shea is currently an Associate Professor of electrical and computer engineering at the University of Florida. Prior to that, he was an Assistant Professor at the University of Florida from July 1999 to August 2005 and a post-doctoral research fellow at Clemson University from January 1999 to August 1999. He was a research assistant in the Wireless Communications Program at Clemson University from 1993 to 1998. He is currently engaged in research on wireless communications with emphasis on error-control coding, cross-layer protocol design, cooperative diversity techniques, and hybrid ARQ. Dr. Shea was selected as a Finalist for the 2004 Eta Kappa Nu Outstanding Young Electrical Engineer Award. He received the Ellersick Award from the IEEE Communications Society in 1996. Dr. Shea was a National Science Foundation Fellow from 1994 to 1998. He is an Associate Editor for the IEEE Transactions on Vehicular Technology. Tan F. Wong received the B.Sc. degree (1st class honors) in electronic engineering from the Chinese University of Hong Kong in 1991, and the M.S.E.E. and Ph.D. degrees in electrical engineering from Purdue University in 1992 and 1997, respectively. He was a research engineer working on the high speed wireless networks project in the Department of Electronics at Macquarie University, Sydney, Australia. He also served as a post-doctoral research associate in the School of Electrical and Computer Engineering at Purdue University. Since August 1998 he has been with the University of Florida, where he is currently an associate professor of electrical and computer engineering. He serves as Editor for Wideband and Multiple Access Wireless Systems for the IEEE Transactions on Communications and as the Editor for the IEEE Transactions on Vehicular Technology.  相似文献   

6.
In order to support the diverse Quality of Service (QoS) requirements for differentiated data applications in broadband wireless networks, advanced techniques such as space-time coding (STC) and orthogonal frequency division multiplexing (OFDM) are implemented at the physical layer. However, the employment of such techniques evidently affects the subchannel-allocation algorithms at the medium access control (MAC) layer. In this paper, we propose the QoS-driven cross-layer subchannel-allocation algorithms for data transmissions over asynchronous uplink space-time OFDM-CDMA wireless networks. We mainly focus on QoS requirements of maximizing the best-effort throughput and proportional bandwidth fairness, while minimizing the upper-bound of scheduling delay. Our extensive simulations show that the proposed infrastructure and algorithms can achieve high bandwidth fairness and system throughput while reducing scheduling delay over wireless networks. Xi Zhang (S’89-SM’98) received the B.S. and M.S. degrees from Xidian University, Xi’an, China, the M.S. degree from Lehigh University, Bethlehem, PA, all in electrical engineering and computer science, and the Ph.D. degree in electrical engineering and computer science (Electrical Engineering—Systems) from The University of Michigan, Ann Arbor, USA. He is currently an Assistant Professor and the Founding Director of the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. He was an Assistant Professor and the Founding Director of the Division of Computer Systems Engineering, Department of Electrical Engineering and Computer Science, Beijing Information Technology Engineering Institute, Beijing, China, from 1984 to 1989. He was a Research Fellow with the School of Electrical Engineering, University of Technology, Sydney, Australia, and the Department of Electrical and Computer Engineering, James Cook University, Queensland, Australia, under a Fellowship from the Chinese National Commission of Education. He worked as a Summer Intern with the Networks and Distributed Systems Research Department, Bell Laboratories, Murray Hills, NJ, and with AT&T Laboratories Research, Florham Park, NJ, in 1997. He has published more than 80 technical papers. His current research interests focus on the areas of wireless networks and communications, mobile computing, cross-layer designs and optimizations for QoS guarantees over mobile wireless networks, wireless sensor and Ad Hoc networks, wireless and wireline network security, network protocols design and modeling for QoS guarantees over multicast (and unicast) wireless (and wireline) networks, statistical communications theory, random signal processing, and distributed computer-control systems. Dr. Zhang received the U.S. National Science Foundation CAREER Award in 2004 for his research in the areas of mobile wireless and multicast networking and systems. He is currently serving as an Editor for the IEEE Transactions on Wireless Communications, an Associated Editor for the IEEE Transactions on Vehicular Technology, and and Associated Editor for the IEEE Communications Letters, and is also currently serving as a Guest Editor for the IEEE Wireless Communications Magazine for the Special Issues of “Next Generation of CDMA vs. OFDMA for 4G Wireless Applications”. He has served or is serving as the Panelist on the U.S. National Science Foundation Research-Proposal Review Panel in 2004, the WiFi-Hotspots/WLAN and QoS Panelist at the IEEE QShine 2004, as the Symposium Chair for the IEEE International Cross-Layer Designs and Protocols Symposium within the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC) 2006, the Technical Program Committee Co-Chair for the IEEE IWCMC 2006, the Poster Chair for the IEEE QShine 2006, the Publicity Co-Chair for the IEEE WirelessCom 2005, and as the Technical Program Committee members for IEEE GLOBECOM, IEEE ICC, IEEE WCNC, IEEE VTC, IEEE QShine, IEEE WoWMoM, IEEE WirelessCom, and IEEE EIT. He is a Senior Member of the IEEE and a member of the Association for Computing Machinery (ACM). Jia Tang (S’03) received the B.S. degree in electrical engineering from Xi’an Jiaotong University, Xi’an, China, in 2001. He is currently a Research Assistant working towards the Ph.D. degree in the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. His research interests include mobile wireless communications and networks, with emphasis on cross-layer design and optimizations, wireless quality-of-service (QoS) provisioning for mobile multimedia networks, wireless diversity techniques, and wireless resource allocation. Mr. Tang received the Fouraker Graduate Research Fellowship Award from the Department of Electrical and Computer Engineering, Texas A&M University in 2005.  相似文献   

7.
Future applications require high, but variable data rates and different quality of services (QoS) which is a real challenge for the communication system design. Additionally, the broadband radio channel can be assumed to be frequency selective and time variant, which means the transmission performance varies over time and frequency. The OFDM transmission technique is very flexible in adapting the transmission parameters to the current channel situation and to the application-specific requirements. This kind of flexibility will be applied to solve the technical tasks in the design procedures of future communication systems.Prof. Hermann Rohling received the Diplom Mathematiker degree from the Technical University Stuttgart, Germany in 1977 and the PhD from the Faculty of Electrical Engineering, Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen, Germany in 1984. From 1977 to 1988 he was with the AEG Research Institute, Ulm as a researcher working in the area of digital signal processing for radar and communications applications. From 1988 to 1999 he was a Professor of Communications Engineering at the Technical University Braunschweig (TUBS). Since 1999, Professor Rohling is with the Technical University in Hamburg-Harburg (TUHH), Germany. His research interests include Wideband Mobile Communications especially based on Multicarrier Transmission Techniques (OFDM) for future broadband systems (4G), Wireless Local Loops, Multiple Access and channel coding schemes, Digital Radar Signal Processing especially for automotive radar applications, differential GPS for high precision navigation. Prof. Rohling is a member of ITG, DGON and a senior member of IEEE.Dr. RainerGrünheid studied Electrical Engineering at theTechnical University Braunschweig (TUBS), Germany, from 1989–1994. After receiving his Diploma degree, he pursued his Ph.D. at the Technical University Hamburg-Harburg (TUHH), Germany, until 2000. Currently, he is working as a research assistant at the Department of Telecommunications at TUHH. His research interests include mobile communications and multicarrier systems (OFDM), with a special emphasis on multiple access schemes, MAC protocols, link adaptation techniques and cross-layer design.  相似文献   

8.
Handoff in heterogeneous cellular networks is one of the hot topics for wireless networks beyond the third generation. We observe that a power exhausting issue may occur in a code division multiple access (CDMA) system with mixed-sized cells. During soft handoff in the downlink transmission, a number of base stations transmit signals to a user simultaneously. Usually, a microcell has a more stringent limitation on the total available power than a macrocell. Thus, ignoring the impact of various cell sizes, the traditional downlink power allocation techniques for soft handoff may easily consume excessive power to serve soft handoff users, while leaving insufficient power for serving other regular users.To resolve such an power exhausting issue in CDMA systems, we investigate different downlink power allocation techniques used in soft handoff subject to the impact of mixed-sized cells. For the single-site power allocation technique we consider the site selection diversity transmission (SSDT) technique, while for the multi-site power allocation we study the link proportional power allocation (LPPA), the quality balancing power allocation (QBPA), and the equal power allocation (EPA) techniques. We find that the multi-site LPPA technique can more efficiently allocate power to both handoff and non-handoff users than others. In an example with the ratio of the micrcocell radius/macrocell radius equal to 1/3, it is demonstrated that LPPA can improve the capacity over EPA, QBPA, and SSDT by 125, 30, and 5%, respectively. By taking account of measurement errors in the same case, the capacity improvements of LPPA over EPA, QBPA, and SSDT become 180, 41, and 23%, respectively.This work was supported jointly by the Lee and MTI Center for networking research, and the National Science Council, Taiwan under the contracts 90-2213-E-009-068 91-2219-E-009-016, and EX-91-E-FA06-4-4. Part of results in this paper were presented at the IEEE Globecom, Nov. 2002, and the Sixth ACM International Workshop on Modelling, Analysis and Simulation of Wireless and Mobile Systems, (MSWiM’03), Sep. 2003.Ching-Yu Liao received the B.S. and M.S. degrees in electrical engineering from Huafan Institute of Technology and National Central University (NCU), Taiwan, in 1995 and 1997, respectively. She is currently working toward the Ph.D degree in communication engineering at National Chiao Tung University (NCTU), Hsinchu, Taiwan. Also, she joins the program of Graduate Student Study Abroad (GSSA), which is sponsored by National Science Council, Taiwan, R.O.C., being a visiting graduate student in Dept. of Electrical Engineering at University of British Columbia, Vancouver, Canada, in 2004. Her research interests include handoff techniques, radio resource management, heterogeneous cellular networks, etc.Li-Chun Wang received the B.S. degree from National Chiao Tung University, Taiwan, in 1986, the M.S. degree from National Taiwan University in 1988, and the Ms. Sci. and Ph. D. degrees in electrical engineering from the Georgia Institute of Technology, Atlanta, in 1995, and 1996, respectively. From 1990 to 1992, he was with the Telecommunications Laboratories of the Ministry of Transportations and Communications in Taiwan (currently the Telecom Labs of Chunghwa Telecom Co.). In 1995, he was affiliated with Bell Northern Research of Northern Telecom, Inc., Richardson, TX. From 1996 to 2000, he was with AT&T Laboratories, New Jersey, USA, where he was a Senior Technical Staff Member in the Wireless Communications Research Department. Since August 2000, he has been an Associate Professor in the Department of Communication Engineering of National Chiao Tung University in Taiwan. His current research interests are in the areas of cellular architectures, radio network resource management, and cross-layer optimization for high speed wireless networks. Dr. Wang was a co-recipient of the Jack Neubauer Memorial Award in 1997 recognizing the best systems paper published in the IEEE Transactions on Vehicular Technology. He is holding three US patents and one more pending. Currently, he is the associate editor of the IEEE Transactions on Wireless Communications.Chung-Ju Chang was born in Taiwan, R.O.C., in August 1950. He received the B.E. and M.E. degrees in electronics engineering from National Chiao Tung University (NCTU), Hsinchu, Taiwan, in 1972 and 1976, respectively, and the Ph.D degree in electrical engineering from National Taiwan University (NTU), Taiwan, in 1985. From 1976 to 1988, he was with Telecommunication Laboratories, Directorate General of Telecommunications, Ministry of Communications, Taiwan, as a Design Engineer, Supervisor, Project Manager, and then Division Director. There, he was involved in designing digital switching system, RAX trunk tester, ISDN user-network interface, and ISDN service and technology trials in Science-Based Industrial Park. In the meantime, he also acted as a Science and Technical Advisor for the Minister of the Ministry of Communications from 1987 to 1989. In 1988, he joined the Faculty of the Department of Communication Engineering and Center for Telecommunications Research, College of Electrical Engineering and Computer Science, National Chiao Tung University, as an Associate Professor. He has been a Professor since 1993. He was Director of the Institute of Communication Engineering from August 1993 to July 1995 and Chairman of Department of Communication Engineering from August 1999 to July 2001. Now, he is the Dean of the Research and Development Office in NCTU. He was an Advisor for the Ministry of Education to promote the education of communication science and technologies for colleges and universities in Taiwan since 1995. He is also acting as a Committee Member of the Telecommunication Deliberate Body. His research interests include performance evaluation, wireless communication networks, and broadband networks. Dr. Chang is a member of the Chinese Institute of Engineers (CIE).E-mail:cjchang@cc.nctu.edu.tw  相似文献   

9.
Three competing schemes have been proposed for multimedia transport over broadband wireless channels: (a) traditional UDP (Postel, The User Datagram Protocol, 1980 [1]), (b) semi-cross-layer UDP-Lite (The Lightweight User Datagram Protocol, 2004 [2]), and (c) cross-layer header estimation (Khayam et al., IEEE Transactions on Multimedia 9(2):377–385, 2007 [3]; Khayam and Radha, IEEE Transactions on Wireless Communications 6(11):3946–3954, 2007 [4]). In all these schemes, corrupted and lost packets are recovered using FEC at the application layer. In this paper, we analytically and experimentally compare the performances of these broadband wireless multimedia schemes. First, we derive lower bounds on the excepted FEC redundancy required by ideal cross-layer header estimation, UDP and UDP-Lite over an arbitrary-order Markov wireless channel. We show that under realistic wireless channel conditions, the cross-layer header estimation scheme always requires lesser redundancy than UDP and UDP-Lite. We then propose a practical minimum distance decoding (MDD) header estimation scheme, which is receiver-based, low complexity and highly accurate. Trace-driven multimedia experiments over wireless LANs demonstrate that MDD header estimation requires significantly lesser FEC redundancy and renders better video quality than existing schemes.  相似文献   

10.
Future wired-wireless multimedia networks require diverse quality-of-service (QoS) support. To this end, it is essential to rely on QoS metrics pertinent to wireless links. In this paper, we develop a cross-layer model for adaptive wireless links, which enables derivation of the desired QoS metrics analytically from the typical wireless parameters across the hardware-radio layer, the physical layer and the data link layer. We illustrate the advantages of our model: generality, simplicity, scalability and backward compatibility. Finally, we outline its applications to power control, TCP, UDP and bandwidth scheduling in wireless networks. The work by Q. Liu and G. B. Giannakis are prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U.S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The work by S. Zhou is supported by UConn Research Foundation internal grant 445157. Qingwen Liu (S’04) received the B.S. degree in electrical engineering and information science in 2001, from the University of Science and Technology of China (USTC). He received the M.S. degree in electrical engineering in 2003, from the University of Minnesota (UMN). He currently pursues his Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Minnesota (UMN). His research interests lie in the areas of communications, signal processing, and networking, with emphasis on cross-layer analysis and design, quality of service support for multimedia applications over wired-wireless networks, and resource allocation. Shengli Zhou (M’03) received the B.S. degree in 1995 and the M.Sc. degree in 1998, from the University of Science and Technology of China (USTC), both in electrical engineering and information science. He received his Ph.D. degree in electrical engineering from the University of Minnesota, 2002, and joined the Department of Electrical and Computer Engineering at the University of Connecticut, 2003. His research interests lie in the areas of communications and signal processing, including channel estimation and equalization, multi-user and multi-carrier communications, space time coding, adaptive modulation, and cross-layer designs. He serves as an associate editor for IEEE Transactions on Wireless Communications since Feb. 2005. G. B. Giannakis (Fellow’97) received his Diploma in Electrical Engineering from the National Technical University of Athens, Greece, 1981. From September 1982 to July 1986 he was with the University of Southern California (USC), where he received his MSc. in Electrical Engineering, 1983, MSc. in Mathematics, 1986, and Ph.D. in Electrical Engineering, 1986. After lecturing for one year at USC, he joined the University of Virginia in 1987, where he became a professor of Electrical Engineering in 1997. Since 1999 he has been a professor with the Department of Electrical and Computer Engineering at the University of Minnesota, where he now holds an ADC Chair in Wireless Telecommunications. His general interests span the areas of communications and signal processing, estimation and detection theory, time-series analysis, and system identification -- subjects on which he has published more than 200 journal papers, 350 conference papers and two edited books. Current research focuses on transmitter and receiver diversity techniques for single- and multi-user fading communication channels, complex-field and space-time coding, multicarrier, ultra-wide band wireless communication systems, cross-layer designs and sensor networks. G. B. Giannakis is the (co-) recipient of six paper awards from the IEEE Signal Processing (SP) and Communications Societies (1992, 1998, 2000, 2001, 2003, 2004). He also received the SP Society’s Technical Achievement Award in 2000. He served as Editor in Chief for the IEEE SP Letters, as Associate Editor for the IEEE Trans. on Signal Proc. and the IEEE SP Letters, as secretary of the SP Conference Board, as member of the SP Publications Board, as member and vice-chair of the Statistical Signal and Array Processing Technical Committee, as chair of the SP for Communications Technical Committee and as a member of the IEEE Fellows Election Committee. He has also served as a member of the IEEE-SP Society’s Board of Governors, the Editorial Board for the Proceedings of the IEEE and the steering committee of the IEEE Trans. on Wireless Communications.  相似文献   

11.
An efficient radio resource allocation scheme is crucial for guaranteeing the quality of service (QoS) requirements and fully utilizing the scarce radio resources in wireless mobile networks. Most of previous studies of radio resource allocation in traditional wireless networks concentrates on network layer connection blocking probability QoS. In this paper, we show that physical layer techniques and QoS have significant impacts on network layer QoS. We use a concept of cross-layer effective bandwidth to measure the unified radio resource usage taking into account both physical layer linear minimum-mean square error (LMMSE) receivers and varying statistical characteristics of the packet traffic in code devision multiple access (CDMA) networks. We demonstrate the similarity between traditional circuit-switched networks and packet CDMA networks, which enables rich theories developed in traditional wireless mobile networks to be used in packet CDMA networks. Moreover, since both physical layer signal-to-interference ratio (SIR) QoS and network layer connection blocking probability QoS are considered simultaneously, we can explore the tradeoff between physical layer QoS and network layer QoS in packet CDMA networks. This work is supported by Natural Science and Engineering Research Council of Canada. Please address all correspondence to Professor Vikram Krishnamurthy at the above address. Fei Yu received the Ph.D. degree in electrical engineering from the University of British Columbia in 2003. From 2002 to 2004, he was with Ericsson (in Lund, Sweden), where he worked on the research and development of dual mode UMTS/GPRS handsets. From 2005, he has been working in Silicon Valley at a start-up, where he conducts research and development in the areas of advanced wireless communication technologies and new standards. After completing the PhD, he has been a research associate in the Department of Electrical and Computer Engineering at the University of British Columbia. His research interests include cross-layer optimization, QoS provisioning and security in wireless networks. Vikram Krishnamurthy (S’90-M’91-SM’99-F’05) was born in 1966. He received his bachelor’s degree from the University of Auckland, New Zealand in 1988, and Ph.D. from the Australian National University, Canberra, in 1992. Since 2002, he has been a professor and Canada Research Chair at the Department of Electrical Engineering, University of British Columbia, Vancouver, Canada. Prior to this he was a chaired professor at the Department of Electrical and Electronic Engineering, University of Melbourne, Australia. His research interests span several areas including ion channels and nanobiology, stochastic scheduling and control, statistical signal processing and wireless telecommunications. Dr. Krishnamurthy has served as associate editor for IEEE Transactions on Signal Processing, IEEE Transactions Aerospace and Electronic Systems, IEEE Transactions Nanobioscience, IEEE Transactions Circuits and Systems II, Systems and Control Letters and European Journal of Applied Signal Processing. He was guest editor of a special issue of IEEE Transactions on NanoBioScience, March 2005 on bio-nanotubes.  相似文献   

12.
There have been a number of studies that investigate efficient packet scheduling schemes to support quality of service of multiple real-time data users and to increase capacity of non-real-time users sharing a wireless channel. We consider the problem of scheduling transmissions of multiple data users sharing the same wireless channel so as to satisfy delay or throughput and present a general packet scheduling, called MBCS (Multi-users Best Channel Scheduling) which takes advantage of the multi-user diversity of a mobile wireless system. In this paper, a queuing model that represents radio resource management for supporting packet data services is developed for the purpose of evaluating the performance of wireless CDMA systems. Numerical results show that delay performance of the proposed scheduler is higher than that of the Single-user Best Channel Scheduler (SBCS) depending on the time-varying channel status.Sungkyung Kim is a Ph. D. student in the collage of information & Communications at University of Korea, Seoul, Korea. She received her B.S. and M.S. degree in electrical engineering from Korea University in 1999 and in 2001, respectively. From March 2001 to August 2004, she worked at the Electronics Telecommunications Research Institute, Daejeon, Korea, as a member of research engineer. Her research interests include MAC protocol, radio resource control, packet scheduling, and system performance evaluation at system level in wireless access networks.Chung Gu Kang received his B.S. degree in Electrical Engineering from the University of California, San Diego in 1987 and his M.S. and Ph.D. degrees both in Electrical and Computer Engineering from the University of California, Irvine, in 1989 and 1993, respectively. While working on his Ph.D. dissertation from June 1991 to May 1992, he also was with the Aerospace Corporation in El Segundo, California, as a part-time member of technical staff (MTS). After graduation in 1993, he joined Rockwell International in Anaheim, California, where he has been working on the signaling system no. 7 and other telecommunication systems development. Since March 1994, he has been with College of Information & Communications at the Korea University, Seoul, Republic of Korea, as a full professor. His research interests include next generation mobile radio communication system and broadband wireless networks, with special emphasis on physical layer/medium access control layer design and performance analysis. During the academic year of 2000, he has been a visiting scholar at Center for Wireless Communication and also a visiting professor at Department of Electrical & Computer Engineering in University of California at San Diego (UCSD). He is a member of IEEE COMSOC, IT, and VT, and a member of KICS and KITE.  相似文献   

13.
Wireless local area networks experience performance degradation in presence of small packets. The main reason for that is the large overhead added at the physical and link layers. This paper proposes a concatenation algorithm which groups IP layer packets prior to transmission, called PAC-IP. As a result, the overhead added at the physical and the link layers is shared among the grouped packets. Along with performance improvement, PAC-IP enables packet-based fairness in medium access as well as includes QoS support module handling delay-sensitive traffic demands. The performance of the proposed algorithm is evaluated through both simulations and an experimental WLAN testbed environment covering the single-hop and the widespread infrastructure network scenarios. Obtained results underline significant performance enhancement in different operating scenarios and channel conditions. Dzmitry Kliazovich received his Masters degree in Telecommunication science from Belarusian State University of Informatics and Radioelectronics in 2002. He is currently working towards the Ph.D. degree in University of Trento, Italy. From September 2005 to February 2006 he was a visiting researcher at the Computer Science Department of the University of California at Los Angeles. He is an author of more than 20 research papers published in international books, journals and conference proceedings. His main research interest lies in field of wireless networking with a focus on performance optimization and cross-layer design. Fabrizio Granelli was born in Genoa in 1972. He received the “Laurea” (M.Sc.) degree in Electronic Engineering from the University of Genoa, Italy, in 1997, with a thesis on video coding, awarded with the TELECOM Italy prize, and the Ph.D. in Telecommunications from the same university, in 2001. Since 2000 he is carrying on his teaching activity as Assistant Professor in Telecommunications at the Dept. of Information and Communication Technology—University of Trento (Italy). In August 2004, he was visiting professor at the State University of Campinas (Brasil). He is author or co-author of more than 60 papers published in international journals, books and conferences, and he is member of the Technical Committee of the International Conference on Communications (from 2003 to 2007) and Global Telecommunications Conference (GLOBECOM2003 and GLOBECOM2004). Dr. Granelli is guest-editor of ACM Journal on Mobile Networks and Applications, special issues on “WLAN Optimization at the MAC and Network Levels” and “Ultra-Wide Band for Sensor Networks”, and Co-Chair of 10th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD’04). Dr. Granelli is General Vice-Chair of the First International Conference on Wireless Internet (WICON’05) and General Chair of the 11th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD’06). His main research activities are in the field of networking and signal processing, with particular reference to network performance modeling, medium access control, wireless networks, cognitive radio systems, and video transmission over packet networks. He is Senior Member of IEEE and Associate Editor of IEEE Communications Letters.  相似文献   

14.
In this paper, we develop an analytical model to evaluate the delay performance of the burst-frame-based CSMA/CA protocol under unsaturated conditions, which has not been fully addressed in the literature. Our delay analysis is unique in that we consider the end-to-end packet delay, which is the duration from the epoch that a packet enters the queue at the MAC layer of the transmitter side to the epoch that the packet is successfully received at the receiver side. The analytical results give excellent agreement with the simulation results, which represents the accuracy of our analytical model. The results also provide important guideline on how to set the parameters of the burst assembly policy. Based on these results, we further develop an efficient adaptive burst assembly policy so as to optimize the throughput and delay performance of the burst-frame-based CSMA/CA protocol. Kejie Lu received the B.E. and M.E. degrees in Telecommunications Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1994 and 1997, respectively. He received the Ph.D. degree in Electrical Engineering from the University of Texas at Dallas in 2003. In 2004 and 2005, he was a postdoctoral research associate in the Department of Electrical and Computer Engineering, University of Florida. Currently, he is an assistant professor in the Department of Electrical and Computer Engineering, University of Puerto Rico at Mayagüez. His research interests include architecture and protocols design for computer and communication networks, performance analysis, network security, and wireless communications. Jianfeng Wang received the B.E. and M.E. degrees in electrical engineering from Huazhong University of Science and Technology, China, in 1999 and 2002, respectively, and the Ph.D. degree in electrical engineering from University of Florida in 2006. From January 2006 to July 2006, he was a research intern in wireless standards and technology group, Intel Corporation. In October 2006, he joined Philips Research North America as a senior member research staff in wireless communications and networking department. He is engaged in research and standardization on wireless networks with emphasis on medium access control (MAC). Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001, and the Best Paper Award in International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine) 2006. Currently, he serves as the Editor-in-Chief of Journal of Advances in Multimedia, and an Associate Editor for IEEE Transactions on Wireless Communications, IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Vehicular Technology, and International Journal of Ad Hoc and Ubiquitous Computing. He is also a guest-editor for IEEE Journal on Selected Areas in Communications (JSAC), Special Issue on Cross-layer Optimized Wireless Multimedia Communications. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as a technical program committee member of over 30 conferences. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Best Paper Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor and got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been actively participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007). He is a senior member of the IEEE.  相似文献   

15.
The proper functioning of mobile ad hoc networks depends on the hypothesis that each individual node is ready to forward packets for others. This common assumption, however, might be undermined by the existence of selfish users who are reluctant to act as packet relays in order to save their own resources. Such non-cooperative behavior would cause the sharp degradation of network throughput. To address this problem, we propose a credit-based Secure Incentive Protocol (SIP) to stimulate cooperation among mobile nodes with individual interests. SIP can be implemented in a fully distributed way and does not require any pre-deployed infrastructure. In addition, SIP is immune to a wide range of attacks and is of low communication overhead by using a Bloom filter. Detailed simulation studies have confirmed the efficacy and efficiency of SIP. This work was supported in part by the U.S. Office of Naval Research under Young Investigator Award N000140210464 and under grant N000140210554. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Wenjing Lou is an assistant professor in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. She obtained her Ph.D degree in Electrical and Computer Engineering from University of Florida in 2003. She received the M.A.Sc degree from Nanyang Technological University, Singapore, in 1998, the M.E degree and the B.E degree in Computer Science and Engineering from Xi'an Jiaotong University, China, in 1996 and 1993 respectively. From Dec 1997 to Jul 1999, she worked as a Research Engineer in Network Technology Research Center, Nanyang Technological University. Her current research interests are in the areas of ad hoc and sensor networks, with emphases on network security and routing issues. Wei Liu received his B.E. and M.E. in Electrical and Information Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001. In August 2005, he received his PhD in Electrical and Computer Engineering from University of Florida. Currently, he is a senior technical member with Scalable Network Technologies. His research interest includes cross-layer design, and communication protocols for mobile ad hoc networks, wireless sensor networks and cellular networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and a professor in August 2005. He has published over 150 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on many editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He is a senior member of the IEEE.  相似文献   

16.
We study the transport capacity of the Gaussian multiple access channel (MAC), which consists of multiple transmitters and a single receiver, and the Gaussian broadcast channel (BC), which consists of a single transmitter and multiple receivers. The transport capacity is defined as the sum, over all transmitters (for the MAC) or receivers (for the BC), of the product of the data rate with a reward r(x) which is a function of the distance x that the data travels. In the case of the MAC, assuming that the sum of the transmit powers is upper bounded, we calculate in closed form the optimal power allocation among the transmitters, that maximizes the transport capacity, using Karush-Kuhn-Tucker (KKT) conditions. We also derive asymptotic expressions for the optimal power allocation, that hold as the number of transmitters approaches infinity, using the most-rapid-approach method of the calculus of variations. In the case of the BC, we calculate in closed form the optimal allocation of the transmit power among the signals to the different receivers, both for a finite number of receivers and for the case of asymptotically many receivers, using our results for the MAC together with duality arguments. Our results can be used to gain intuition and develop good design principles in a variety of settings. For example, they apply to the uplink and downlink channel of cellular networks, and also to sensor networks which consist of multiple sensors that communicate with a single central station. Work was carried out while all authors were with the Telecommunications Research Center Vienna (ftw.), and supported by K plus funding for the ftw. project I0 “Signal and Information Processing.” Parts of this work have appeared, in preliminary form, in [1,2,3], Gautam A. Gupta holds a joint B.S./M.S. degree in mathematics and computing at the Department of Mathematics of the Indian Institute of Technology at New Delhi. During the summer of 2003, he attended a summer course on Probability and Statistical Mechanics organized by the Scoula Normale Superiore, in Pisa, Italy. During the summers of 2004 and 2005 he worked at the Telecommunications Research Center Vienna (ftw.) as a summer intern. During the spring of 2006, he was a visitor at the Norwegian University of Science and Technology, working toward his M. S. Thesis. Stavros Toumpis received the Diploma in electrical and computer engineering from the National Technical University of Athens, Greece, in 1997, the M.S. degrees in electrical engineering and mathematics from Stanford University, CA, in 1999 and 2002, respectively, and the Ph.D. degree in electrical engineering, also from Stanford, in 2003. From 1998 to 1999, he worked as a Research Assistant for the Mars Global Surveyor Radio Science Team, providing operational support. From 2000 to 2003, he was a Member of the Wireless Systems Laboratory, at Stanford University. From 2003 to 2005, he was a Senior Researcher with the Telecommunications Research Center Vienna (ftw.), in Vienna, Austria. Since 2005, he is a Lecturer at the Department of Electrical and Computer Engineering of the University of Cyprus. His research is on wireless ad hoc networks, with emphasis on their capacity, the effects of mobility on their performance, medium access control, and information theoretic issues. Jossy Sayir received his Dipl. El.-Ing. degree from the ETH Zurich in 1991. From 1991 to 1993, he worked as a development engineer for Motorola Communications in Tel Aviv, Israel, contributing to the design of the first digital mobile radio system ever produced by Motorola. He returned to ETH from 1993 to 1999, getting his PhD in 1999 under the supervision of Prof. J.L. Massey. The title of his thesis is “On Coding by Probability Transformation.” Since 2000, he has been employed at the Telecommunications Research Center (ftw) in Vienna, Austria, as a senior researcher. His research interests include iterative decoding methods, joint source and channel coding, numerical capacity computation algorithms, Markov sources, and wireless ad hoc and sensor networks. Since July 2002, he manages part of the strategic research activities at Ftw and supervises a group of researchers. He has taught courses on Turbo and related codes at Vienna University of Technology and at the University of Aalborg, Denmark. He has served on the organization committees of several international conferences and workshops. Ralf R. Müller was born in Schwabach, Germany, 1970. He received the Dipl.-Ing. and Dr.Ing. degree with distinction from University of Erlangen-Nuremberg in 1996 and 1999, respectively. From 2000 to 2004, he was with Forschungszentrum Telekommunikation Wien (Vienna Telecommunications Research Center) in Vienna, Austria. Since 2005 he has been a full professor at the Department of Electronics and Telecommunications at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. He held visiting appointments at Princeton University, U.S.A., Institute Eurecom, France, The University of Melbourne, Australia, and The National University of Singapore and was an adjunct professor at Vienna University of Technology. Dr. Müller received the Leonard G. Abraham Prize (jointly with Sergio S. Verdú) from the IEEE Communications Society and the Johann-Philipp-Reis Prize (jointly with Robert Fischer). He was also presented an award by the Vodafone Foundation for Mobile Communications and two more awards from the German Information Technology Society (ITG). Dr. Müller is currently serving as an associate editor for the IEEE Transactions on Information Theory.  相似文献   

17.
Providing delay guarantees to time-sensitive traffic in wireless multimedia networks is a challenging issue. This is due to the time-varying link capacities and the variety of real-time applications expected to be handled by such networks. We propose and evaluate the performance of a channel-aware scheduling discipline and a set of policies that are capable of providing such delay guarantees in TDM-based wireless networks. First, we introduce the Channel-Dependent Earliest-Due-Date (CD-EDD) discipline. In this discipline, the expiration time of the head of line packets of users' queues is taken into consideration in conjunction with the current channel states of users in the scheduling decision. This scheme attempts to guarantee the targeted delay bounds in addition to exploiting multiuser diversity to make best utilization of the variable capacity of the channel. We also propose the violation-fair policy that can be integrated with the CD-EDD discipline and two other well-known scheduling disciplines [1, 2]. In this policy, we attempt to ensure that the number of packets dropped due to deadline violation is fairly distributed among the users. The proposed schemes can provide statistical guarantees on delays, achieve high throughput, and exhibit good fairness performance with respect to throughput and deadline violations. We provide extensive simulation results to study the performance the proposed schemes and compare them with two of the best known scheduling disciplines [1, 2] in the literature. Khaled M. F. Elsayed (S90-M95-SM02) received his B.Sc. (honors) in electrical engineering and M.Sc. in engineering mathematics from Cairo University in 1987 and 1990 respectively. He received his Ph.D. in computer science and computer engineering from North Carolina State University in 1995. He is now an Associate Professor in Cairo University, Egypt and is an independent telecommunications consultant. Between 1995 and 1997, he was a member of scientific staff with Nortel Wireless Systems Engineering in Richardson, TX.Dr. Elsayed was the editor for the Internet technology series of the IEEE Communications Magazine from 1998 until 2002. He has served on technical program committees for several IEEE, IFIP, and ITC conferences. He was the technical co-chair for IFIP MWCN 2003 conference in Singapore. He also served as an expert evaluator for the European Commission FP5 and FP6 programmes. His research interest is in the area of performance evaluation of communication networks including IP, wireless and optical networks. Ahmed Khattab received his B.Sc. (honors) and MS.C in Electronics and Communications Engineering from Cairo University in 2002 and 2004 respectively. Since August 2005, he is pursuing his PhD degree at Rice University, Texas. His research interests are in wireless networking and radio resource management.  相似文献   

18.
An improved radio resource allocation scheme with avoidance of major interferers is proposed and analyzed for the downlink of Fixed Broadband Wireless Access (FBWA) systems with full frequency reuse. The scheme is based on Enhanced Staggered Resource Allocation (ESRA) and permits the enhancement of the throughput per sector. Simulation results show a maximum downlink throughput per sector in excess of 44% and an increase of 10% with respect to ESRA is achieved, with Base Station (BS) selection procedure, while meeting a 15 dB signal-to-interference ratio (SIR). Nicholas Vaiopoulos was bornin Lamia in 1977. He received his Physics degree and his M.Sc.degree in electronics and radio-communications from the University of Athens, Greecein 2000and 2003, respectively. Currently, he is working towards his Ph.D. degree on the resource allocation techniques with reference to wireless systems at the Department of informatics and Telecommunications at the same University. His research interests include broadband communications systems, scheduling algorithms and power control techniques for wireless systems. Alexander Vavoulaswas born in Athens in 1976. He received his B.Sc. degree in physics and the M.Sc. degree in electronics and radio-communications in 2000 and 2002 respectively,both from the University of Athens, Greece. Currently he is working toward the Ph.D. degree on the radio resource allocation techniques with the same University. His research interest is focused on broadband wireless access and interference management. He is a student nmember of the IEEE. Dimitris Varoutas holds BSc. degree in Physics, M.Sc. in electronics and radio-communi cations and Ph.D. in telecommunications systems and technoeconomics, all from the University of Athens. He is a lecturer in the Department of Informatics and Telecommunications of University of Athens and an adjunct assistant professor in the Department of Telecommunications of the newly founded University of Peloponnese. He has participating in numerous European R&D projects in the RACE I &II, ACTS, Telematics, RISI and IST framework in the areas of telecommunications and Technoeconomics. He is an adviser in several organisations including OTE and EETT (Greek NRA for telecommunications) in the fields of telecommunications, broadband and mobile services, licensing, spectrum management, pricing and legislation. His research interests are optical, microwave communications and technoeconomic evaluation of network architectures and services. He has more than 30 publications in refereed journal and conferences in the area of telecommunications, optoelectronics and technoeconomics. He is a member of IEEE and serves as reviewer in several journals and conferences. Thomas Sphicopoulos received the Physics degree from Athens University in 1976, the D.E.A. degree and Doctorate in Electronics both from the University of Paris VI in 1977 and 1980 respectively, the Doctorat Es Science from the Ecole Polytechnique Federale de Lausanne in 1986. From 1976 to 1977 he worked in Thomson CSF Central Research Laboratories on Microwave Oscillators. From 1977 to 1980 he was an Associate Researcher in Thomson CSF Aeronautics Infrastructure Division. In 1980 he joined the Electromagnetism Laboratory of the Ecole Polytechnique Federal de Lausanne where he carried out research on Applied Electromagnetism. Since 1987 he is with the Athens University engaged in research on Broadband Communications Systems. In 1990 he was elected as an Assistant Professor of Communications in the Department of Informatics & Telecommunications, in 1993 as Associate Professor and since 1998 he is a Professor in the same Department. His main scientific interests are Microwave and Optical Communication Systems and Networks and Techno-economics. He has lead about 40 National and European R&D projects. He has more than 100 publications in scientific journals and conference proceedings. From 1999 he is advisor in several organisations including EETT (Greek NRA for telecommunications) in the fields of market liberalisation, spectrum management techniques and technology convergence.  相似文献   

19.
A low power, low data rate ultra wideband (UWB) impulse radio transceiver for location and tracking applications is presented in this paper. The UWB receiver is based on a non-coherent, energy collection approach, which makes the receiver highly independent of the shape of the transmitted waveform. The UWB signal is generated by a pulse generator and band-pass filter fixing the signal bandwidth to 1 GHz in the band from 3.1 GHz to 4.1 GHz. The modulation scheme used in this time division multiple access system (TDMA) is Binary Pulse Position Modulation (BPPM). In this paper the system concept, system architecture and RF parts of the VLSI implementation are peresented. The transceiver is implemented in a 0.35 μm SiGe process provided by Austria Microsystems. Sakari Tiuraniemi was born in Kolari, Finland, on March 10, 1977. He received his M.Sc. degree in 2003 in electrical engineering from the University of Oulu, Finland, where he then continued his research on transceiver integration and implementation issues for two years. In 2005 he joined the CERN in Geneva, Switzerland, where he is working towards the PhD degree in electrical engineering. His current research focuses on detector readout electronics for high energy physics applications. Lucian Stoica was born in Roman, Romania, on December 8, 1975. He received the M.S. degree in electrical engineering from the Technical University of Iasi, Romania, in 2000. He was with Telecommunications Department at the Technical University of Iasi from 2000 to 2003. As a teaching assistant he was involved in development of digital design and FPGA prototyping. In 2003, he joined Centre for Wireless Communications, University of Oulu, Oulu, Finland where he is working towards the PhD degree in electrical engineering. His current research focuses on low complexity SiGe BiCMOS circuit transceivers design for wireless communications, particularly on ultrawideband impulse radio systems. Alberto Rabbachin received the M.S. from the University of Bologna, Italy, in 2001. In 2001, during his undergraduate studies, he visited the Centre for Wireless Communications, University of Oulu, Finland. In 2002 he joined Agilent Technologies for an internship and since 2003 he is working towards the PhD degree at the Centre for Wireless Communications. His research interests include UWB systems with emphasis on receiver structures, synchronization and ranging techniques. Ian Oppermann was born in Maryborough, Australia, in 1969. He completed a BSc, BE and PhD at the University of Sydney Australia in 1990, 1992 and 1997, respectively. His PhD was related to physical layer aspects of novel spread spectrum/CDMA systems. In 1996 he founded SP Communications, a company which developed network planning tools for 3G mobile systems and IP cores for WLAN chipsets. He became a Docent (Adjunct Professor) at the University of Oulu, Finland in 2001 and subsequently joined the Centre for Wireless Communications (CWC) in 2002 as Assistant Director, becoming Director in 2003. From the beginning of 2005 is the acting Director for Short Range Communications Research at CWC. His main research interests are spread spectrum systems and UWB. Dr. Oppermann has co-edited several books, holds several patents for wireless communications and has over 80 publications in international journals and conferences.  相似文献   

20.
There are two essential ingredients in order for any telecommunications system to be able to provide Quality-of-Service (QoS) guarantees: connection admission control (CAC) and service differentiation. In wireless local area networks (WLANs), it is essential to carry out these functions at the MAC level. The original version of IEEE 802.11 medium access control (MAC) protocol for WLANs does not include either function. The IEEE 802.11e draft standard includes new features to facilitate and promote the provision of QoS guarantees, but no specific mechanisms are defined in the protocol to avoid over saturating the medium (via CAC) or to decide how to assign the available resources (via service differentiation through scheduling). This paper introduces specific mechanisms for both admission control and service differentiation into the IEEE 802.11 MAC protocol. The main contributions of this work are a novel CAC algorithm for leaky-bucket constrained traffic streams, an original frame scheduling mechanism referred to as DM-SCFQ, and a simulation study of the performance of a WLAN including these features. This work has been partly funded by the Mexican Science and Technology Council (CONACYT) through grant 38833-A. José R. Gallardo received the B.Sc. degree in Physics and Mathematics from the National Polytechnic Institute in Mexico City, the M.Sc. degree in Electrical Engineering from CICESE Research and Graduate Education Center in Ensenada, Mexico, and the D.Sc. degree in Electrical Engineering from the George Washington University, Washington, DC. From 1997 to 2000 he worked as a Research Associate at the Advanced Communications Engineering Centre of the University of Western Ontario, London, Ontario, Canada. From May to December 2000, he worked as a Postdoctoral Fellow at the Broadband Wireless and Internetworking Research Laboratory of the University of Ottawa. Since December 2000, Dr. Gallardo has been with the Electronics and Telecommunications Department of CICESE Research Center, where he is a full professor. His main areas of interest are traffic modeling, traffic control, as well as simulation and performance evaluation of broadband communications networks, with recent emphasis on wireless local area networks (WLANs) and wireless sensor networks (WSNs). Paúl Medina received the B.Eng. degree from the Sonora Institute of Technology, Obregon, Mexico, and the M.Sc. degree from CICESE Research and Graduate Education Center, Ensenada, Mexico, both in Electrical Engineering. From July to September 2005, he worked as a Research Associate at the Broadband Wireless and Internetworking Research Laboratory of the University of Ottawa, Canada. Mr. Medina is currently with CENI2T, Ensenada, Mexico, working as a lead engineer in projects related to routing and access control in wireless sensor networks, as well as IP telephony over wireless LANs. Weihua Zhuang received the B.Eng. and M.Eng. degrees from Dalian Maritime University, Liaoning, China, and the Ph.D. degree from the University of New Brunswick, Canada, all in electrical engineering. Since October 1993, she has been with the Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada, where she is a full professor. She is a co-author of the textbook Wireless Communications and Networking (Prentice Hall, 2003). Dr. Zhuang received the Outstanding Performance Award in 2005 from the University of Waterloo, and the Premier’s Research Excellence Award in 2001 from the Ontario Government. She is an Editor/Associate Editor of IEEE Transactions on Wireless Communications, IEEE Transactions on Vehicular Technology, EURASIP Journal on Wireless Communications and Networking, and International Journal of Sensor Networks. Her current research interests include multimedia wireless communications, wireless networks, and radio positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号