首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(3‐hexylthiophene) (P3HT)/reduced graphene oxide (rGO) nanocomposites were prepared through in situ reduction of graphene oxide in the presence of P3HT. The nonisothermal crystallization behaviors of P3HT and P3HT/rGO nanocomposites were investigated by differential scanning calorimetry. The Avrami, Ozawa, and Mo models were used to analyze the nonisothermal kinetics. The addition of rGO remarkably increased the crystallization peak temperature and crystallinity of P3HT, but the crystallization half‐time revealed little variation. The crystallization activation energies were calculated by the Kissinger equation. The results suggested that rGO plays a twofold role in the nonisothermal crystallization of P3HT, that is, rGO promotes the crystallization of P3HT as nucleating agent, and meanwhile, it also restricts the motion of P3HT chains. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
A series of heterocyclically conjugated polymer–clay nanocomposite (PCN) materials that consisted of organic poly(3‐hexylthiophene) (P3HT) and inorganic montmorillonite (MMT) clay platelets were prepared by in situ oxidative polymerization with FeCl3 as an oxidant. The as‐synthesized PCN materials were characterized by Fourier transform infrared (FTIR) spectroscopy, wide‐angle powder X‐ray diffraction (WAXRD), and transmission electron microscopy (TEM). The effects of the material composition on the anticorrosion, gas barrier, thermal stability, flammability, mechanical strength, and electrical conductivity properties of the P3HT and PCN materials were studied by electrochemical corrosion measurements, gas‐permeability analysis (GPA), thermogrametric analysis (TGA), limiting oxygen index (LOI) measurements, dynamic mechanical analysis (DMA), and a four‐point probe technique, respectively. The molecular weights of extracted and bulk P3HT were determined by gel permeation chromatography (GPC) with THF as an eluant. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3438–3446, 2004  相似文献   

3.
The temperature–conductivity characteristics of poly(3‐hexylthiophene) (P3HT) composites filled with P3HT‐grafted indium tin oxide (ITO) particles were investigated in this work. The ITO particles were first treated with a silane coupling reagent of 3‐aminopropyltriethoxysilane (APS), and then thiophene rings were introduced through a condensation reaction between the ending amino groups of APS and the carboxylic groups of thiophene‐3‐acetic acid. The composites were prepared by the polymerization filling of the 3‐hexylthiophene (3HT) monomer with the thiophene‐ring‐introduced ITO particles. Elemental analysis, Fourier transform infrared, and X‐ray photoelectron spectroscopy were used to confirm the grafting reaction on the ITO surface. The longer the polymerization time was or the higher the 3HT/ITO feeding ratio was, the more P3HT was grafted. The influence of the grafted amount on the electrical properties of ITO particles was attributed to the wrapping effect formed by the grafted P3HT on the surface of the ITO particles. The conductivity change of the P3HT‐grafted ITO/P3HT composites was proved to be subject to the change in the average gap width of ITO interparticles, which was determined by the filling ratio of P3HT to ITO in the polymerization and the volume expansion effect of a P3HT thin film between neighboring ITO particles during the heating process. In comparison with the ungrafted ITO/P3HT composites, the grafting treatment enhanced the interaction between the particles and polymer matrix, and this was helpful for obtaining a more homogeneous dispersion structure for the composites and thus afforded a higher positive temperature coefficient intensity and better reproducibility. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1881–1888, 2006  相似文献   

4.
A combination of reduced graphene oxide (rGO) nanosheets grafted with regioregular poly(3‐hexylthiophene) (P3HT) (rGO‐g‐P3HT) and P3HT‐b‐polystyrene (PS) block copolymers was utilized to modify the morphology of P3HT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layers in photovoltaic devices. Efficiencies greater than 6% were acquired after a mild thermal annealing. To this end, the assembling of P3HT homopolymers and P3HT‐b‐PS block copolymers onto rGO‐g‐P3HT nanosheets was investigated, showing that the copolymers were assembled from the P3HT side onto the rGO‐g‐P3HT nanosheets. Assembling of P3HT‐b‐PS block copolymers onto the rGO‐g‐P3HT nanosheets developed the net hole and electron highways for charge transport, thereby in addition to photoluminescence quenching the charge mobility (μh and μe) values increased considerably. The best charge mobilities were acquired for the P3HT50000:PC71BM:rGO‐g‐P3HT50000:P3HT7000b‐PS1000 system (μh = 1.9 × 10?5 cm2 V–1 s–1 and μe = 0.8 × 10?4 cm2 V–1 s–1). Thermal annealing conducted at 120 °C also further increased the hole and electron mobilities to 9.8 × 10?4 and 2.7 × 10?3 cm2 V–1 s–1, respectively. The thermal annealing acted as a driving force for better assembly of the P3HT‐b‐PS copolymers onto the rGO‐g‐P3HT nanosheets. This phenomenon improved the short circuit current density, fill factor, open circuit voltage and power conversion efficiency parameters from 11.13 mA cm?2, 0.63 V, 62% and 4.35% to 12.98 mA cm?2, 0.69 V, 68% and 6.09%, respectively. © 2019 Society of Chemical Industry  相似文献   

5.
Graphene oxide (GO) is a carbon‐based material, which is one atom thick sheet of graphite. The nanofillers have exceptional stiffness and strength owing to the presence of two‐dimensional graphene backbone. Especially owing to this reason, nanocomposites have been developed using GO for several applications. This review article explores the synthesis of GO from flake graphite. Main emphasis has been afforded on the preparation and characterization of GO nanocomposites, utilizing various industrial polymers for wide application in aerospace, biomedical, military, supercapacitors, electrical, sensor, and so on. Morphological characterization exploring the interaction and extent of dispersion of GO nanosheets in the polymer matrices is extensively accounted. From the reports, it is clear that exfoliation and strong interaction of GO tremendously improved the physical, mechanical, thermal, electrochemical, biocompatibility, and tribological properties of the added polymer. POLYM. COMPOS., 35:2297–2310, 2014. © 2014 Society of Plastics Engineers  相似文献   

6.
A series of thermoplastic elastomers based on ethylene oxide‐poly(dimethylsiloxane)‐ethylene oxide (EO‐PDMS‐EO), as the soft segment, and poly(butylene terephthalate) (PBT), as the hard segment, were synthesized by catalyzed two‐step, melt transesterification reaction of dimethyl terephthalate (DMT) with 1,4‐butanediol (BD) and α,ω‐dihydroxy‐(EO‐PDMS‐EO). Copolymers with a content of hard PBT segments between 40 and 90 mass % and a constant length of the soft EO‐PDMS‐EO segments were prepared. The siloxane prepolymer with hydrophilic terminal EO units was used to improve the miscibility between the polar comonomers, DMT and BD, and the nonpolar PDMS. The molecular structure and composition of the copolymers were determined by 1H‐NMR spectroscopy, whereas the effectiveness of the incorporation of α,ω‐dihydroxy‐(EO‐PDMS‐EO) into the copolymer chains was verified by chloroform extraction. The effects of the structure and composition of the copolymers on the melting temperatures and the degree of crystallinity, as well as on the thermal degradation stability and some rheological properties, were studied. It was demonstrated that the degree of crystallinity, the melting and crystallization temperatures of the copolymers increased with increasing mass fraction of the PBT segments. The thermal stability of the copolymers was lower than that of PBT homopolymer, because of the presence of thermoliable ether bonds in the soft segments. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
This paper reports on the thermal behavior and mechanical properties of nanocomposites based on unsaturated polyester resin (UP) modified with poly(ɛ‐caprolactone) (PCL) and reinforced with an organically modified clay (cloisite 30B). To optimize the dispersion of 30B and the mixing of PCL in the UP resin, two different methods were employed to prepare crosslinked UP–PCL‐30B hybrid nanocomposites. Besides, two samples of poly(ɛ‐caprolactone) of different molecular weight (PCL2: Mn = 2.103g.mol−1 and PCL50: Mn = 5.104g.mol−1) were used at several concentrations (4, 6, 10 wt%). The 30B concentration was 4 wt% in all the nanocomposites. The morphology of the samples was studied by scanning electron microscopy (SEM). The analysis of X‐ray patterns reveals that intercalated structures have been found for all ternary nanocomposites, independently of the molecular weight, PCL concentration and the preparation method selected. A slight rise of the glass transition temperature, Tg, is observed in UP/PCL/4%30B ternary nanocomposites regarding to neat UP. The analysis of the tensile properties of the ternary (hybrid) systems indicates that UP/4%PCL2/4%30B nanocomposite improves the tensile strength and elongation at break respect to the neat UP while the Young modulus remains constant. POLYM. COMPOS., 35:827–838, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Poly(3‐methylthiophene) (P3‐MeT) doped with different anions were prepared electrochemically in the presence of tetraalkylammonium salts. The new poly(3‐methylthiophene) SnCl and SbCl (P3‐MeT SnCl5 and P3‐MeT SbCl6) were prepared electrochemically using tetra‐n‐butylammonium pentachlorostannate and tetra‐n‐butylammonium hexachloroantimonate as the supporting electrolytes. The effect of current density, salt concentration, reaction temperature, and the nature of solvents on the polymer yield and polymer conductivities have been investigated. Cyclic voltammetry of poly(3‐methylthiophene) has been examined at platinum electrode in 1,2‐dichloroethane medium containing n‐Bu4NSnCl5, Bu4NSbCl6, and Bu4NClO4 as the supporting electrolytes in the range of −1.0 to 1.7 V versus SCE in the presence and absence of 3‐methylthiophene. Electrical conductivity, magnetic susceptibility measurements, and structural determination by elemental analysis and infrared studies were also made. Scanning electron microscopy revealed a globular, branched, fibrous and a spongy, fibrous morphology of poly(3‐methylthiophene) SnCl, ClO, and SbCl, respectively. The thermal analysis of the polymers was also investigated. Possible causes for the observed lower conductivity of these polymers have also been discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 91–102, 1999  相似文献   

9.
A simple approach was employed to synthesize silver nanoparticle (Ag NP) reinforced reduced graphene oxide–poly(amidoamine) (Ag‐r‐RGO–PAMAM) nanocomposites. The structural changes of the nanocomposites with the PAMAM and Ag NPs were confirmed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, Raman spectroscopy, and scanning electron microscopy. In addition, the performance was characterized with thermogravimetric and electrical conductivity instruments. The results indicate that the Ag NPs are well dispersed in fine size on the surface of the RGO–PAMAM composites, which results in an increase of at least 38% in thermostability and a certain enhancement in electrical conductivity. It is worth noting that the electrical conductivity of the nanocomposites was approximately 5.88 S cm?1, which was higher than that of RGO–PAMAM, and increases with the rising content of silver nanoparticles. Meanwhile, the Ag‐r‐RGO–PAMAM nanocomposites still maintain a favorable dispersion in organic solvents. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45172.  相似文献   

10.
The dielectric dispersion and relaxation process in melt‐compounded hot‐pressed poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay nanocomposite films of 0–20 wt % MMT concentration were investigated over the frequency range 20 Hz to 1 MHz at ambient temperature. X‐ray diffraction study of the nanocomposites evidences that the PEO has been intercalated into the MMT interlayer galleries with a helical‐type multilayer structures, which results the formation of unique parallel plane PEO–MMT layered structures. The relaxation times corresponding to PEO chain segmental motion were determined from the loss peak frequencies of different dielectric formalisms and the same is used to explore the interactions compatibility between PEO molecules and the MMT nano platelets. It is revealed that the loading of only 1 wt % MMT in PEO matrix significantly increases the PEO chain segmental motion due to intercalation, which further varies anomalously with increase of MMT concentration. The real part of dielectric function at 1 MHz, relaxation time, and dc conductivity of these melt‐compounded nanocomposites were compared with the aqueous solution‐cast PEO–MMT films. Considering the comparative changes in the values of various dielectric parameters, the effect of synthesization route on the intercalated/exfoliated‐MMT structures and the PEO chain dynamics were discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Nanoscale‐phase separation of electron donor/acceptor blends is crucial for efficient charge generation and collection in polymer bulk heterojunction photovoltaic cells. We investigated solvent vapor annealing effect of poly(3‐hexylthiophene) (P3HT)/methanofullerene (PCBM) blend on its morphology and optoelectronic properties. The organic solvents of choice for the treatment have a major effect on the morphology of P3HT/PCBM blend and the device performance. Ultraviolet‐visible absorption spectroscopy shows that specific solvent vapor annealing can induce P3HT self‐assembling to form well‐ordered structure; and hence, the absorption in the red region and the hole transport are enhanced. The solvent that has a poor solubility to PCBM would cause large PCBM clusters and result in a rough blend film. By combining an appropriate solvent vapor treatment and post‐thermal annealing of the devices, the power conversion efficiency is enhanced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The morphological appearance, fiber diameter, and structure of poly(ε‐caprolactone) (PCL) nanofibers produced by the electrospinning process were studied in the presence of different amounts of graphene oxide (GO) with different oxidation levels. Scanning electron microscope micrographs of electrospun fibers showed that the average fiber diameter decreases in the presence of GO with different loading and oxidation levels. The loading level of GO especially higher than 0.3 wt% was influential in decreasing the diameter of PCL electrospun fibers rather than oxidation level. Contact angle, infrared spectroscopy, and conductivity measurements on graphite oxide (GtO) samples, as well as rheological, conductivity, and surface tension experiments on PCLGO solutions were performed to describe the role of GO in the significant reduction of fiber diameter. It was found that three factors are involved in generating a driving force for more stretching of the electrospinning jet. One is the viscosity reduction of PCLGO solution, which intensifies by more GO content and less GO oxidation level. The second is solution conductivity which enhances by GO loading and the third is the charge relaxation time of the spinning solution, which grows with increasing the oxidation level of GO as well as the GO content. POLYM. COMPOS., 131–140, 2016. © 2014 Society of Plastics Engineers  相似文献   

13.
Layer‐structured poly(vinyl alcohol)/graphene oxide nanocomposites in the form of films are prepared by simple solution processing. The structure and properties of these nanocomposites are studied using X‐ray diffractions, scanning electron microscopy, Fourier‐transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The results indicate that graphene oxide is dispersed on a molecular scale and aligned in the poly(vinyl alcohol) matrix, and there exists strong interfacial interactions between both components, which are responsible for the significant improvement in the thermal and mechanical properties of the nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Herein, we report a facile method to significantly enhance the dielectric performance of reduced graphene oxide-based polymer composites. Addition of thionyl chloride into graphene oxide (GO) dispersion induces synergistic modifications of the structure, chemistry, charge carrier density and electrical conductivity of GO, as well as the interfacial interaction and phase of the surrounding matrix in the poly (vinylidene fluoride) (PVDF) composite. The composites reinforced with a very low reduced chlorinated GO (Cl-rGO) content of 0.2 vol% deliver an exceptional dielectric constant of 364 with a moderate dielectric loss of 0.077 at 1 kHz. These values are well contrasted with the corresponding properties of the neat PVDF polymer with a constant of 28 and a loss of 0.0029. Synergistic effects arising from chlorination are identified, including the much enhanced electrical conductivity of Cl-GO sheets by more than 3 orders of magnitude through introducing charge-transfer complexes, the improved interfacial interactions between the fillers and the PVDF matrix through hydrogen bonds, and the transformation of PVDF to β-phase with an inherently high dielectric constant due to dipolar interaction. The comparison with the literature data confirms superior dielectric performance of the present Cl-rGO/PVDF composites.  相似文献   

15.
In this work, poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) nanocomposites containing functionalized graphene sheets (FGS) were prepared by means of high‐energy ball milling. The crystalline structure, oxygen barrier, mechanical and electrical properties, and biodegradability of the developed nanocomposites were analyzed and correlated with the amount of FGS incorporated and with their morphology, which was reported in a previous study. Addition of FGS into the PHBV matrix did not affect the crystal morphology of the material but led to somewhat enhanced crystallinity. The good dispersion and distribution of the nanofiller within the polymeric matrix, revealed in the first part of this study, was thought to be crucial for the mechanical reinforcing effect of FGS and also resulted in enhanced gas barrier properties at high relative humidity. Additionally, the conducting behavior of the nanocomposites, as interpreted by the percolation theory, displayed a very low percolation threshold set at ~0.3 vol % of FGS, while the materials exhibited an overall significantly enhanced conductivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42217.  相似文献   

16.
This study is focused on the development and analysis of the thermal and structural behavior of nanocrystalline cellulose (NCC)‐based bionanocomposites (BCs). Nanocrystalline cellulose was prepared by controlled acid hydrolysis of oil palm empty fruit bunch fibers. The resulting NCC was surface modified using TEMPO‐mediated oxidation and solvent exchange methods for surface functionalization and also to improve dispersion of fillers. Solvent exchange NCC reinforced polymer blend containing poly(lactic acid)/poly‐(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) was prepared by using solution casting technique at various NCC loading percentages. The addition of NCC resulted in the improvement of structural, thermal, and mechanical properties of BCs as compared to that of the polymer blend. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44328.  相似文献   

17.
This article describes the preparation process of two series of poly(trimethylene terephthalate) (PTT) nanocomposites with an addition of exfoliated graphite nanoplatelets with two different platelets’ size (50 and 500 μm). The influence of their size on processing, physicochemical properties, morphology and, most importantly, electrical conductivity and barrier properties of thin polymer films has been studied. It was clearly found that smaller platelets enabled to obtain conductive thin polymer films with a nanoplatelet content of 0.3‐0.5 wt.%. However, nanocomposite based on PTT with 0.5 wt% of EG with the flake size of 500 μm proved to be nonconductive. At the same time smaller EG platelets demonstrated a more uniform distribution in the PTT matrix, which was confirmed by means of scanning and transmission electron microscopies, thus giving the samples in question barrier properties with respect to CO2 and O2. Moreover, it has been shown that both nanofillers did not have a significant influence on the phase transition temperatures and on the long period. They caused however a slight decrease of crystallinity which is an evidence of an antinucleating character of those nanoplatelets in the PTT matrix. POLYM. ENG. SCI., 55:2222–2230, 2015. © 2015 Society of Plastics Engineers  相似文献   

18.
To elucidate the effect of fiber structure on the properties of the electrospun gelatin/PCL hybrid membranes, three types of fibers with different structures, i.e., core‐shell, blend, and mixed fibers were fabricated. The crystallinity, wettability, swelling degree, and mechanical properties of the hybrid membranes were compared. It was found that the crystalline characteristics of PCL in the core‐shell fibers were different from the fibers fabricated by the other two methods. That is, the orientation degree of the PCL chains in the core‐shell fibers was higher than that in both blend and mixed fibers. The wettability of the hybrid membrane was dependent on both the composition and structure of the electrospun fibers. Blended fibers exhibited the highest hydrophobicity because of the enrichment of PCL at the fiber surface. Contrarily, the mixed fibers possessed the highest mechanical strength of 3–5.18 MPa. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Star‐shaped molecules consisting of regioregular poly(3‐hexylthiophene) (P3HT) chains as the arms, attached to either a propeller‐like triphenylamine or a planar triphenylbenzene core, have been synthesized via Suzuki coupling. The structures of the three‐arm star‐shaped poly(3‐hexylthiophene) (s‐P3HT) materials obtained were studied using Fourier transform infrared, 1H and 13C NMR, XRD, gel permeation chromatography and DSC. The s‐P3HT polymers were soluble in common organic solvents and exhibited number‐average molecular weights of 6000–7200 g mol?1. Their optical properties in solutions and in solid state films were investigated using the UV?visible absorption and photoluminescence techniques, and were compared with those of linear P3HT. © 2015 Society of Chemical Industry  相似文献   

20.
Polypyrrole/graphene oxide (Ppy/GO) nanocomposites were synthesized via in situ polymerization of pyrrole in the presence of GO at various proportions (1–5%). They were characterized to determine their electrical, thermal, and rheological properties by various techniques. The aim of this study was to determine the rheological behavior of Ppy/GO nanocomposite at different mass ratios (100 : 1, 100 : 2, 100 : 3, 100 : 4, and 100 : 5%) and temperature (25–180°C) using a rotational mode in cone‐plate method. The shear stress (τ Pa) and viscosity (η Pa s) values of the nanocomposites increased with the increase in GO mass ratio added to Ppy, which was accompanied by an increased flexibility of the nanocomposites due to the higher aspect ratio of the GO sheet. Hence, it is suggested that the GO sheets are effective for the reinforcement of Ppy thereby significantly improvising its thermal stability, electrical conductivity, and rheological properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40642.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号