首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本研究采用机械合金化方法制备氧化物(Al2O3)弥散强化镍基高温合金预合金粉末.通过改变球磨工艺参数,分析了球磨转速和球料比对机械合金化过程的影响,对球磨后的粉末进行SEM分析、XRD分析、粒度测试和松装密度测试,得出最佳的球磨工艺参数。实验结果表明:Al2O3 弥散强化镍基高温合金机械合金化粉末尺寸随球磨转速的增加先减小后增大,当球磨转速为400rmp,球料比为20∶1时,合金粉末有较高的松装密度和较小的粉末粒度。  相似文献   

2.
采用球磨法制备Co-Cr-W合金粉末,研究球磨时间(0,5,10,15,20,25 h)对该合金粉末性能的影响。利用XRD和SEM等方法对不同球磨时间合金粉末的晶粒尺寸、微观应变和微观形貌进行分析,并测定烧结后合金的密度、硬度和抗弯强度变化。结果表明:在球磨转速为300 r/min,球料质量比为10:1的条件下,在球磨初期粉末颗粒明显细化,粉末出现片状形貌;随球磨时间继续增加,粉末粒度先增大后减小,晶粒尺寸不断减小,并在球磨20 h后这种变化趋于平稳。随球磨时间延长,微观应变和合金硬度也明显提高。  相似文献   

3.
采用XRD,SEM和EPMA等方法分析Mo-12Si-10B-3Zr-0.3Y(原子分数)混合粉末在500 r/min转速下进行球磨时的机械合金化行为。结果表明:球磨后在混合粉末中并未形成Mo3Si和Mo5SiB2化合物相,而仅形成了合金元素在Mo中的过饱和固溶体Moss和弥散分布于其中的亚微米级B颗粒。随球磨时间延长,Moss的晶粒尺寸不断减小,其微观应变不断增加,球磨30 h后两者分别约为47 nm和0.53%;从XRD谱可知,球磨2 h后有少量的α-MoSi2生成,但球磨30 h后其衍射峰消失。球磨5 h后混合粉末由层片状的复合颗粒组成,球磨10 h后层片状复合颗粒破裂并转变为等轴状,球磨30 h后混合粉末由平均粒径约1μm的球状团聚体颗粒组成。  相似文献   

4.
采用机械合金化法制备了纳米TiC增强Ti基复合粉末,通过XRD、SEM、TEM和EDS分别表征粉末的物相、形貌、晶体结构和元素分布,探索球磨转速、球料比及球磨时间对复合粉末物相形貌的影响。结果表明:当球磨转速达到300 r/min以上、球料比达到20∶1以上时,球磨效率无明显差异。球磨时间达到10 h,粉末中TiC物相明显;继续延长球磨时间至20 h,得到纳米级TiC增强相。在300 r/min球磨转速、20∶1球料比、20 h球磨时间条件下,可得到纳米TiC增强Ti基复合粉末,粉末中部分区域呈非晶态,大量纳米TiC颗粒弥散分布于粉末中。  相似文献   

5.
卢百平  韦雯  刘灿成  徐辉 《粉末冶金技术》2012,30(2):130-134,139
采用高能球磨法制备超细Al2O3粉末,研究了球磨时间、球磨转速及工艺控制剂等工艺参数对Al2O3粉末粒度和形貌的影响。结果表明:在一定范围内,延长球磨时间,提高球磨转速均能有效地减小颗粒尺寸;在球磨过程中加入工艺控制剂,能有效地防止粉末粘附在磨球和磨罐上,并改善粉末颗粒的均匀性。在本文试验条件下,加入工艺控制剂乙醇,球磨转速为400r/min,球磨时间为30h等条件下,获得Al2O3粉末的D50为0.82μm,Al2O3粉末粒径分布在0.12~6.37μm范围内。  相似文献   

6.
β-Ti型结构的钛基材料在生物材料领域具有广泛的应用前景。本文采用机械合金化法和放电等离子烧结制备β-Ti型Ti-Nb基合金,研究不同Nb,Fe含量对合金显微组织及力学性能的影响。利用扫描电镜(SEM)、X射线衍射仪(XRD)和透射电镜(TEM)等手段分析合金的显微组织变化情况。结果表明:机械合金化过程中,粉末的平均粒度减小,当球磨时间超过60 h时粉末易发生团聚。当球磨转速为300 r/min,球料比为12:1,Ti和Nb的质量分数分别为64%和24%时,球磨100 h后制备的粉体材料中具有一定体积的非晶相。该粉末在1 000℃下通过放电等离子烧结(SPS)制备具有均匀细小的球状晶粒组织的Ti-Nb合金,其强度、伸长率和弹性模量分别为2 180MPa,6.7%和55 GPa。通过控制Nb,Fe的含量,可以促进β-Ti相形成,获得高强度和低杨氏模量的Ti-Nb合金。  相似文献   

7.
采用热机械合金化制备纳米晶W-Cu复合粉末。通过XRD、SEM、激光粒度测试等方法对球磨后的粉末进行表征。结果表明:随球磨时间延长,W的晶粒尺寸不断减小,球磨30 h后W的平均晶粒尺寸为41 nm左右;球磨初期,粉末迅速细化;随球磨时间延长,粉末粒度有所增加;进一步增加球磨时间,粉末粒度减小。球磨粉末还原后有较高的烧结活性,1 200℃烧结后相对密度可达97%以上。烧结材料的组织非常均匀,且晶粒细小。  相似文献   

8.
机械合金化诱导难互溶系Cu-Cr合金固溶度扩展的研究   总被引:4,自引:2,他引:2  
采用机械合金化工艺制备Cu-4%Cr和Cu-7%Cr(原子分数)二元合金粉末,利用XRD,SEM和TEM研究机械合金化过程中粉末的微观形貌和显微组织结构,测量了不同球磨时间粉末的氧含量以及显微硬度.结果表明:在一定的球磨时间内,Cu-Cr合金粉末随着高能球磨的进行,晶粒逐渐细化至纳米尺寸,晶格畸变增加,但进一步球磨会导致铜的晶格常数有所增加,畸变降低.实验证明,在固态下几乎不互溶的Cu-Cr合金,经球磨40 h的机械合金化,Cr在Cu中的固溶度明显提高.  相似文献   

9.
高能球磨工艺对钨铜复合材料组织的影响   总被引:3,自引:0,他引:3  
采用机械合金化方法将W-15%Cu混合粉末在行星式高能球磨机中球磨,研究了不同球磨时间对钨铜复合材料组织的影响,利用XRD及SEM分析了不同球磨时间的粉末和烧结后的样品,结果表明,随着球磨时间的延长,粉末的晶粒尺寸不断减小,烧结后样品的相对密度不断提高.球磨60h的混合粉末在1350℃烧结后的相对密度达到98.8%.  相似文献   

10.
高能球磨制备纳米晶镁合金粉末的研究   总被引:1,自引:0,他引:1  
利用氩气保护下的高能球磨,制备了纳米晶AZ31镁合金粉末。采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等方法,研究了高能球磨过程中粉末微观组织与形貌演变规律。结果表明:随着球磨时间的延长,镁合金粉末的晶粒尺寸逐渐减小,微观应变和晶格常数逐渐增大;粉末颗粒首先被碾压成扁平状并相互焊合使颗粒尺寸粗化,然后随球磨的继续进行发生断裂,使颗粒尺寸逐渐减小;球磨80h后,粉末组织与形貌均趋于稳定,获得了平均颗粒尺寸为15~20μm、晶粒尺寸为85nm左右的纳米晶AZ31镁合金粉末。  相似文献   

11.
通过将成分为Nd2Fe14B(原子比)的铸态合金与羰基铁粉的混合粉末进行搅拌式机械球磨,并对球磨后的合金粉末进行真空晶化处理,制备了纳米复相Nd2Fe14B/α-Fe永磁合金。通过X射线衍射(XRD)、差示扫描量热法(DSC)、透射电子显微镜(TEM)等分析方法研究了球磨时间及晶化处理温度对合金微观组织的影响。结果表明,随球磨时间的延长,Nd2Fe14相及α-Fe的晶粒尺寸迅速减小,球磨5h后粉末由Nd2Fe14B非晶相和晶粒尺寸约为10nm左右的α-Fe组成,在随后的晶化热处理过程中转变成Nd2Fe14B/α-Fe纳米复相组织。  相似文献   

12.
采用高能球磨法制备出了用于生产纳米晶稀土硬质合金的原料粉末。通过XRD、SEM和DTA等分析检测手段,研究了该纳米WC—Co—RE粉末的结构、形貌和相的变化。结果表明:高能球磨45h,可获得晶粒尺寸约为8.45mm的WC—Co—RE粉末;微量稀土的加入,有利于粉末晶粒的细化;在25~45h范围内,随着高能球磨时间的延长,粉末晶粒尺寸的减小趋势符合直线变化规律,且掺稀土粉末的晶粒尺寸比未掺稀土粉末的晶粒尺寸减小一半;高能球磨25h,粉末中Co相的X射线衍射峰消失。高能球磨ⅥE—Co—RE粉末的DTA曲线在597℃出现了一个尖锐的放热峰。高能球磨WC—Co—RE粉末固结之后,所制得合金的晶粒细小且机械性能较好。  相似文献   

13.
将初始Zr粉和V粉按一定比例混合 ,用高能球磨设备制备Zr V纳米粉末 ,利用XRD和SEM及TEM研究研磨过程中粉末的物相及粒度变化。结果表明 ,粉末的晶粒尺寸随研磨时间的增加而减少 ,适当增加转速 ,可以缩短晶粒细化时间 ;通过高能球磨可以制备出粉末晶粒尺寸在 10nm左右 ,粉末颗粒尺寸在 6nm左右的Zr V混合粉末  相似文献   

14.
研究了高能球磨时间对W-30Cu复合粉末晶粒度及烧结行为的影响.结果表明,当球磨时间从16h提高到33h时,复合粉的晶粒度由25nm减小到10nm,并发生机械合金化现象;在温度为1275℃烧结60min,经18h高能球磨的复合粉末烧结就可以达到全致密.研究还发现,高能球磨W-30Cu复合粉末具有较好的热稳定性,经950℃退火处理,晶粒尺寸没有发生异常长大现象;经烧结材料的硬度明显高于普通的W-30Cu复合材料.经1 275℃烧结30 min后合金其晶粒尺寸在300~550 nm.  相似文献   

15.
以Ti、Cr元素粉末为原料研究了Ti-20%Cr和Ti-30%Cr两种合金^ 的机械合金化规律。研究结果表明,随着球磨时间的增加,Ti-Cr粉末颗粒、晶粒逐渐细化,层状结构越来越薄,Ti和Cr的X射线衍射峰均出现宽化和强度下降,同时发现球磨40h以前Cr衍射角连续左移减小。球磨至100h时,其XRD谱显示出非晶特征,颗粒尺寸趋于稳定。  相似文献   

16.
利用低温液氮球磨技术制备了Al-Zn-Mg-Cu合金纳米晶粉末,并采用X射线衍射(XRD)对材料在球磨过程中的晶粒尺寸和微观应变进行了研究,利用扫描电镜(SEM)、透射电镜(TEM)和差热分析(DSC)等测试方法研究了材料的固态相变以及热稳定性.研究表明,粉末晶粒尺寸随着球磨的进行逐渐减小,球磨10h后晶粒尺寸达到45nm;微观应变随着球磨的进行逐渐增大.粉末球磨过程中,MgZn2相逐渐减少,合金元素过饱和固溶于α-Al晶格之中.球磨10h后仅有少量的MgZn2相存在.制备的Al-Zn-Mg-Cu纳米晶粉末在低于709K下加热,粉末晶粒长大速度较慢,表明Al-Zn-Mg-Cu纳米晶粉末具有较高的热稳定性.  相似文献   

17.
以喷射成形Fe-6.5Si过喷粉末为研究对象,采用OM、XRD、VSM、TEM等手段研究了不同球磨工艺条件下所得合金粉末的组织形貌及微观结构对软磁性能的影响,据此找到较佳的球磨工艺条件.结果表明:Fe-6.5Si合金过喷粉末在366 r·min~(-1)下球磨24 h后,平均晶粒尺寸为25.9 nm.球磨后粉末的磁性能受残余应力和晶粒尺寸的共同影响,在366r·min~(-1)下球磨18 h获得了最佳的磁性能,其饱和磁化强度为205.37 emu·g~(-1),矫顽力为30.096 Oe.  相似文献   

18.
高能球磨合成纳米WC-Co复合粉末的特性   总被引:2,自引:0,他引:2  
采用变转速多次循环高能球磨工艺在32min制备出了平均晶粒尺寸约为25nm的纳米WC-10CO-0.8VC-0.2Cr3C2(重量分数)复合粉末,并用化学元素分析、XRD,TEM,DTA对纳米WC—Co复合粉末的特性进行了表征和分析。结果表明,变转速多次循环高能球磨工艺制备的纳米WC—CO复合粉末,化学成分合格,杂质含量低,球磨效率高;球磨过程是一个晶粒逐渐细化的过程,同时也是一个晶格畸变逐渐增加、粉末体系能量逐渐增大的过程;球磨得到的WC-Co纳米复合粉末颗粒形貌基本为球形,粒径分布较宽,颗粒中存在着一些团聚体,平均颗粒尺寸约为50nm;纳米WC-10Co-0.8VC-0.2Cr3C2(wt%)复合粉末的共晶点约为1280℃。纳米复合粉末中W,Co,V,Cr元素分布均匀弥散。  相似文献   

19.
首先采用一步球磨法制备了成分为Zn-30Al-6Si-0.5Cu(质量分数/%)和Zn-30Al-3Si-3Cu(质量分数/%)的高铝锌铝合金粉末,其次采用二步球磨法制备了成分为Zn-30Al-6Si-0.5Cu(质量分数/%)的合金粉末,并利用XRD、SEM粒度分析仪对粉末的物相组成、颗粒形貌及粒度进行了表征和分析。结果表明:含硅量为6%的合金粉末的颗粒尺寸比含硅量为3%的合金粉末更为细小,尺寸分布更为集中,球磨12h之后的粉末其金相组织主要由富Al的α相、富Zn的η相以及Si相组成。经过二步球磨后的Zn-30Al-6Si-0.5Cu粉末中Al9Si相基本消失,Si相含量增加;二步球磨法制备的粉末颗粒尺寸更为细小。通过扫描电镜观察发现粉末形貌不规则,且分布不够均匀,粉末中基本未观察到类似焊片的颗粒。  相似文献   

20.
在真空条件下利用球磨技术获得Fe-Al合金粉末.利用超景深显微镜和SEM研究了高能球磨过程中粉末微观组织与形貌的演变规律;利用XRD分析了球磨时间对合金化程度的影响.结果表明:随着球磨时间的延长,Fe、Al混合粉末在变形和冷焊作用下颗粒粗化、密实,发生合金化;加工硬化导致了颗粒脆性化,在磨球的撞击下发生颗粒细化;庚烷作为过程控制剂可以减缓颗粒粗化,缩短球磨时间;经过30 h的球磨可获得3μm的Fe-Al合金粉末.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号