共查询到20条相似文献,搜索用时 0 毫秒
1.
为了研究不同含水率气煤的自燃特性,通过程序升温实验系统,分别对5种煤样进行低温氧化实验。实验结果表明:在低温氧化过程中,不同含水率气煤的自燃特性参数均随温度的升高呈指数变化趋势;煤样的CO与CO2体积分数、耗氧速率、放热强度均表现出低含水率下大于原煤,高含水率下小于原煤的规律;在加速氧化阶段,原煤的活化能为75.7 kJ/mol,相比之下含水率为5.87%、9.81%、13.81%的煤样活化能分别降低了6.8、25.6、4.6 kJ/mol,而含水率17.85%煤样的活化能却上升了4.1 kJ/mol。研究结果表明:一定范围内水分含量越大,煤样的表观活化能越小,煤的自燃倾向性越高;而过量水分会抑制热量积聚,使煤的活化能变大,自燃倾向性变低。
相似文献2.
《煤矿安全》2017,(5):41-45
为了研究解吸附煤样的自燃特性,运用煤低温氧化试验系统测试了煤样在氮气条件下恒温解吸附及解吸附再次氧化升温特性,分析了解吸附过程的气体产物规律和解吸附煤样的自燃特性参数,研究原煤和解吸附煤样的氧化、放热特性。结果表明:恒温解吸附过程中产生CO、CO_2、CH_4气体,CO_2的气体产生量远大于CO、CH_4,随着箱温温度的升高,气体产量也增大;与原煤相比,恒温30℃和50℃解吸附煤样的耗氧速率、放热强度均小于原煤;在70℃之前,恒温70℃解吸附煤样与原煤的耗氧速率和放热强度相似,在90~110℃之间出现交叉温度点,交叉温度点之前原煤的耗氧速率、放热强度大于恒温70℃解吸附煤样,之后小于原煤,说明不同恒温解吸附过程对煤的自燃特性的影响具有一定的差异。 相似文献
3.
为了研究不同的风量条件对煤自燃极限参数的影响,采用煤自燃程序升温实验系统,测试了5种不同风量条件下煤样的耗氧速率、CO产生率、CO_2产生率和放热强度,在此基础上计算煤自燃极限参数并分析其变化规律。实验结果表明:不同的供风量导致煤体的氧化放热强度不同,在风量为60 m L/min的情况下煤体放热强度最大;煤自燃极限参数随风量的变化可以分为2个阶段:风量在40 m L/min之前,煤样的最小浮煤厚度和下限氧浓度均随风量的增加而减小,煤样的上限漏风强度随风量的增加而增加。风量在40 m L/min之后,最小浮煤厚度和下限氧浓度随风量的增加近似呈线性增加,上限漏风强度随风量的增加近似呈线性减小,说明在井下开采过程中要注意风量的调节,使煤的自燃极限参数向不利于煤自燃的方向发展。 相似文献
4.
预氧化煤自燃特性试验研究 总被引:9,自引:0,他引:9
为研究预氧化煤自燃特性参数变化规律,采用程序升温试验研究原煤和预氧化煤的自燃特性。结果表明:与原煤相比,随着温度增加,预氧化至90℃的煤样耗氧速率、CO产生率、CO2产生率、放热强度均大于原煤;随着温度的增加,预氧化至130℃的煤样与原煤的耗氧速率、CO产生率、放热强度曲线的交叉温度为80~90℃,预氧化至170℃的煤样的交叉温度为110~120℃,小于交叉温度时,预氧化煤的耗氧速率、CO产生率、放热强度大于原煤,超过交叉温度后小于原煤;小于80℃时,预氧化至130、170℃的煤样的CO2产生率大于原煤,超过80℃后小于原煤;预氧化煤的最小浮煤厚度、下限氧浓度极值减小,上限漏风强度极值增大;煤的氧化程度越高,自燃极限参数极值变化量越大。 相似文献
5.
6.
7.
为了探究氧化煤的低温氧化特性及演变规律,采用程序升温实验系统,对平煤八矿煤样分别预氧化至60 ℃、90 ℃、120 ℃、150 ℃、180 ℃、210 ℃时通入N2绝氧降温形成的氧化煤,进行低温氧化程序升温实验;为进一步揭示不同灭火条件下形成的氧化煤低温氧化行为特征,对煤样预氧化至120 ℃时,通入3种不同体积分数N2灭火后形成的氧化煤,开展低温氧化程序升温测试,测定这两类氧化煤低温氧化过程耗氧速率、标志性气体(CO、CO2)产生率以及放热强度的变化规律。结果表明:氧化煤的耗氧速率、标志性气体产生率和放热强度均小于原煤;预氧化至90 ℃煤样的自燃特性参数更接近原煤,说明预氧化至临界温度的煤更易发生复燃;而预氧化至120 ℃时通入N2的体积分数越高,这类氧化煤的自燃特征参数越接近原煤,说明通入N2体积分数越高的煤复燃能力越强。因此,开采近距离煤层群、复采工作面以及启封火区等区域的煤体时,应防范其发生复燃。 相似文献
8.
9.
10.
煤自燃是威胁开采、储存和利用过程的重要因素之一,而煤在低温阶段的氧化放热反应也是导致煤自燃的主要因素。为了研究烟煤在低温条件下的放热特性,选取3种不同变质程度的烟煤进行研究,煤样分别为曹家滩(CJT)的长焰煤、大佛寺(DFS)的不黏煤和东滩(DT)的气煤。采用微量热仪(C80)实时监测煤样在30~300℃温度区间内升温过程中的热流变化,从而探究不同烟煤低温氧化过程的热流变化规律以及放热情况,得到低温氧化过程的分段热流特征以及相应的数学模型。为了进一步研究升温速率对烟煤放热特性的影响,试验分别设置在0.2、0.4和0.6℃/min的不同升温速率下进行,通过热流模型和热量公式建立判定自燃倾向性的指数γ,从而分析不同升温速率对烟煤低温氧化过程放热特性和煤自燃倾向性的影响规律。结果表明:烟煤低温氧化分为了吸热、缓慢放热、加速放热和快速放热4个阶段,随着升温速率的升高,特征温度点有着向后推移的趋势,放热量呈现减小的趋势,3个放热阶段的放热量占比没有明显变化,约为1%、30%、70%。并且发现升温速率越低,活化能值越小,煤自燃倾向性指数γ值变大。通过研究烟煤的放热特性和不同升温速率对烟煤放热特性的... 相似文献
11.
为了研究挥发分对煤本身自燃能力的影响作用,在氮气环境中对同一处采集的煤样分别在300,600,900℃高温下进行了灼烧处理,获得了挥发分不同的5份煤样;利用自制的油浴式煤低温氧化实验系统对所得煤样进行了升温氧化实验,测得了不同温度下煤样罐出口中的O2,CO,CO2等气体的体积分数;推导了煤的耗氧速率与放热强度计算公式,结合实验数据,得到了不同煤样的耗氧速率及放热强度变化情况,以此来判断减少挥发分后煤的自燃能力强弱。结果表明,相同条件下,挥发分越低,煤的耗氧速率、放热强度越小,越不易自燃。 相似文献
12.
为研究采空区内部不同瓦斯浓度条件下弱黏煤低温氧化特性及动力学参数变化规律,采用煤自燃程序升温实验系统测试分析了不同瓦斯浓度条件下弱黏煤低温氧化过程中气态产物随温度变化规律,并计算得到弱黏煤低温氧化过程中的极限参数及活化能。结果表明:CO可以作为弱黏煤自燃防控的主要预测指标气体,C2H4和第二火灾系数R2可以作为预测弱黏性煤自燃程度的辅助指标;不同瓦斯浓度煤样的极限参数的最值都分布在60~85℃的温度范围内,与煤自燃临界温度比较相近;随着甲烷体积分数从0增加到4%时,弱黏煤表观活化能呈现出逐渐上升的趋势,分别增加了35.061、18.426、25.837 kJ/mol。 相似文献
13.
为揭示气煤自燃特征参数规律,通过煤自燃标志性气体测定系统,测定气煤自燃标志性气体产生规律,对气煤自燃特征参数进行深度分析,得出了气煤自燃特征参数规律。结果表明:CO/CO_2的比值规律性良好,能反映气煤自燃的趋势;保德气煤的临界温度为42℃,干裂温度为101℃;CO产生率先缓慢增加后急剧增加,温度拐点为100℃;CO_2产生率随煤温升高而增大;CH4产生率随煤温升高先增大后减小,极值点煤温为130℃;煤温100℃前,耗氧速率线性缓慢增加,超过100℃,耗氧速率迅速增加;最大与最小放热强度随煤温升高而增大。基于以上研究,确立了气煤自燃特征参数规律,为科学有效地预防气煤自燃提供了理论依据。 相似文献
14.
15.
16.
17.
18.
为了研究煤在氧浓度为5%和21%条件下的恒温氧化特性,以山东兴隆庄矿3#煤层煤样作为研究对象,采用同步热分析仪进行实验,得出不同温度下的热分析曲线(TG、DTG、DSC),掌握煤样在升温和恒温氧化阶段的质量和放热量的变化情况,同时采用Coats-Redfern动力学方程和lnln分析法,分别计算了吸氧增重段和恒温段的活化能。结果表明:在持续升温阶段,当温度低于103.1℃时,氧浓度为5%和21%时均对质量变化量影响较小,但氧浓度为21%的吸热量较氧浓度为5%时减少;温度高于103.1℃时,21%氧浓度对煤样的质量变化、放热量、活化能的影响大于氧气浓度为5%的条件下。在恒温阶段,随着恒温温度的升高,煤样质量变化率、氧化放热量和活化能呈现增大趋势,且氧浓度为21%大于氧浓度为5%的参数;同一温度条件下,21%氧浓度比5%氧浓度的煤样质量变化更为明显。 相似文献
19.
针对目前研究煤自燃氧化升温规律时没有分析覆岩垮落及保护煤柱形成的轴向应力对粒径不同煤的渗透率和裂隙结构等参数的影响,借助气相色谱仪及荷载加压装置,通过试验研究粒径不同的煤样在热—应力耦合影响下的自燃氧化升温规律,结果表明:随着单轴应力不断增大,粒径不同的煤样升温速率变化趋势基本相同,表现为先升高再减少趋势;耗氧速率表现... 相似文献