首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was aimed to investigate how thermal conductivity and stability properties of synthesized thermoplastic elastomers were influenced by zinc oxide (ZnO) additives which differed in size and surface treatment. ZnO particles were prepared by the homogeneous precipitation method by mixing aqueous solutions of hexamethylenetetramine (HMT) and zinc nitrate. The obtained particles were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Poly(vinyl pyrrolidone) (PVP) was used as a modifier to reduce aggregation among the ZnO particles. The composites, prepared by melt compounding method, were characterized in terms of their morphology and thermal properties. Uniformly distributed surface treated particles caused an enhancement in thermal conductivity properties. At 10 wt% ZnO concentration the thermal conductivity of composite reached 1.7 W/mK compared with 0.3 W/mK for the neat polymer. At the same filler loading, ZnO nanoparticles exhibited a greater effect on thermal conductivity compared with submicron sized particles. It was found that the coefficient of thermal expansion of composites decreased at low temperature (55°C) with increasing ZnO content. Thermal gravimetric analysis (TGA) showed that the neat polymer and the composites were resistant up to 340°C without significant mass loss. POLYM. COMPOS., 37:2369–2376, 2016. © 2015 Society of Plastics Engineers  相似文献   

2.
Composites of polylactide (PLA, 100–60 wt%) and wood flour (0–40 wt%) were prepared to assess the effects of wood filler content on the mechanical, chemical, thermal, and morphological properties of the composites. The polysaccharide chitosan (0–10 wt%) was added as a potential coupling agent for the PLA‐wood flour composites. Addition of wood flour significantly increased the flexural modulus and the storage modulus of PLA‐wood flour composite, but neither the wood flour nor chitosan had an effect on the glass transition temperature (Tg). Fourier transform infrared spectra did not show any evidence of covalent bonding, but chitosan at the interface between wood and PLA is thought to have formed hydrogen bonds to PLA‐carbonyl groups. SEM images of fracture surfaces showed that fiber breakage was far more common than fiber pullout in the composites. No evidence of discrete chitosan domains was seen in SEM micrographs. When added at up to 10 wt% (based on wood flour mass), chitosan showed no significant effect on the mechanical, chemical, or thermal properties of the composites, with property changes depending on wood flour content only. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

3.
This work aimed to examine flame retardancy, antifungal performance and physical–mechanical properties for silane‐treated wood–polymer composites (WPCs) containing zinc borate (ZnB). ZnB with content from 0.0 to 7.0 wt% was added to WPCs, and silane‐treated wood contents were varied. The polymers used were poly(vinyl chloride) (PVC) and high‐density polyethylene (HDPE). The decay test was performed according to the European standard EN 113. Loweporus sp., a white‐rot fungus, was used for antifungal performance evaluation. Antifungal performance was observed to decrease with wood content. Incorporation of ZnB at 1.0 wt% significantly increased the antifungal performance of WPCs. ZnB content of greater than 1.0 wt% lowered the antifungal properties of WPCs. The results suggested that the wood/PVC composite exhibited better antifungal performance than the wood/HDPE composite. The addition of wood flour to PVC and HDPE decreased flame retardancy, whereas the incorporation of ZnB retained the flame retardancy. ZnB was found to be more appropriate for wood/PVC than wood/HDPE as a result of hydrogen chloride generated from the dehydrochlorination reaction of PVC. The results indicated that the addition of ZnB did not affect the physical‐mechanical properties of neat polymers and the composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A series of novel nano‐ZnO/polymer composite films with different ZnO contents was prepared through incorporation of pre‐made colloidal ZnO particles into monomer mixtures of urethane‐methacrylate oligomer and 2‐hydroxyethyl methacrylate, followed by ultraviolet (UV) radiation‐initiated polymerization. The colloidal ZnO nanoparticles with a diameter of 3–5 nm were synthesized from zinc acetate and lithium hydroxide in ethanol via a wet chemical method. In order to stabilize and immobilize the ZnO particles into the polymer matrix, the ZnO nanoparticles were further capped using 3‐(trimethoxysilyl)propyl methacrylate. Thermogravimetric analyses show that the ZnO nanoparticles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Transmission electron microscopy studies indicate the ZnO nanoparticles were uniformly dispersed in the polymer and they remained at the original size (3–5 nm) before immobilization. All nanocomposite films with ZnO particle contents from 1 to 15 wt% show good transparency in the visible region and luminescent properties. In addition, composite films with high ZnO content (>7 wt%) are able to absorb UV irradiation below 350 nm, indicating that these composite films exhibit good UV screening effects. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
In this work, the response of different filler loading of zinc oxide (ZnO) reinforced ultra‐high‐molecular‐weight polyethylene (UHMWPE) on mechanical, abrasive wear, and antibacterial properties were studied. Two variants of untreated ZnO‐reinforced UHMWPE (U‐ZPE) and treated ZnO‐reinforced UHMWPE (T‐ZPE) with aminoproplytriethoxysilane (APTES) were used to compare the improvement of the mechanical, abrasive wear, and antibacterial properties. The abrasive wear and friction behaviors were monitored using a pin‐on‐disc (POD) test rig with different applied loads and sliding speeds against 400‐grit size of silicon carbide (SiC) abrasive paper under dry sliding conditions. The antibacterial assessments of the composites were tested against two common human body bacteria, that is, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Results have shown that T‐ZPE possess higher ultimate tensile strength and elongation at break values as compared to U‐ZPE. Furthermore, the T‐ZPE have higher wear resistance compared to U‐ZPE and pure UHMWPE. The average coefficient of friction (COF) of UHMWPE was not significantly affected by the addition of both untreated and treated ZnO filler. The wear mechanisms were studied under scanning electron microscopy (SEM). Both U‐ZPE and T‐ZPE composites showed active inhibition against E. coli and S. aureus bacteria. POLYM. COMPOS., 34:1020–1032, 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
This study presents the influence of zinc oxide (ZnO) on the structural, thermal, and antibacterial characteristics of chitosan. The chitosan composites containing different concentrations of ZnO (0.5–2 mass ratio with respect to chitosan) were prepared using sol‐cast transformation method. Fourier‐transform infrared spectra and X‐ray diffraction patterns revealed chemical interactions between the chitosan and ZnO in the composites that became more evident at higher concentrations of filler. The composites exhibited significantly lower degradation rate and higher thermal stability than that of chitosan. When 50% mass loss is set as a point of comparison, the chitosan/ZnO (1:2) composite exhibited 143°C higher thermal stability compared with chitosan. Similarly, the composites exhibited biocidal activity to gram positive and gram negative bacteria. Furthermore, higher biocidal activity was possessed by chitosan/ZnO (1:1) composites. The current–voltage characteristics curves also depicted a significant increase in the value of current versus voltage at equimolar concentration of chitosan and ZnO. It can be concluded that the biocompatible, eco‐friendly and low cost chitosan/ZnO composite hydrogels can be used for food packaging and biomedical applications. POLYM. COMPOS., 35:79–85, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
Hybrid silver/zinc oxide (Ag/ZnO) nanostructured microparticles were obtained via the fast and simple microwave‐assisted synthesis. The phase structure of filler particles was revealed by X‐ray diffraction analysis. Composites with medical‐grade poly(vinyl chloride) were prepared with filler concentration from 1 to 5 wt%. The scanning electron microscopy was used for morphology characterization and elemental analysis of both filler and composites. The mechanical properties of composites and the electrical resistivity were found suitable for medical device application. The excellent surface antibacterial performance of the prepared composite tested according to ISO 22196:2007 against Escherichia coli and Staphylococcus aureus showed the reliability of the material in the medical application field. POLYM. COMPOS., 35:19–26, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
《Polymer Composites》2017,38(9):1974-1981
The interest in using different solid waste as reinforcement in polymer composite preparation has increased considerably in recent years. Slag is one of the inorganic waste materials obtained from ore processing. In this work, epoxy composites filled with different percentages of slag were prepared. Physico‐mechanical, thermal, and coating properties of these composites were determined depending on the amount of filler, type of hardener, and polyethylene glycol (PEG) addition. X‐ray diffraction (XRD) studies were carried out to examine the compatibility of the filler and epoxy resin and XRD results showed good compatibility between two materials. The results of mechanical testing illustrated that hardness of the epoxy composites containing anhydride was partially higher than with Epamine PC17 in contrast to elongation at break. The tensile strength and Young modulus decreased with increasing filler amount. When compared to neat epoxy resin, corrosion, and adhesion properties of the composites with filler addition did not change significantly. The highest water sorption values were obtained for the epoxy composites with PEG addition. The composites hardened by anhydride had better thermal stability than the composites including Epamine PC17. POLYM. COMPOS., 38:1974–1981, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
The effects of polystyrene-co-maleic anhydride (SMA) compatibilizer on mechanical, thermal and morphological properties of polystyrene (PS)/zinc oxide (ZnO) composites were investigated for the first time in this study. PS/ZnO composites were prepared using a twin screw extruder and were then molded by compression method. In order to improve adhesion between filler and matrix, SMA compatibilizer is used in the composites. Tensile strength and Young??s modulus were increased with increasing ZnO and SMA at low concentration, but they were decreased with increasing high concentrations of ZnO and SMA content. Thus, mechanical properties can be enhanced in the composites with SMA compatibilizer. Moreover due to the effect of particle size, 250?nm ZnO particles (ZnO250) improved the mechanical properties of PS more than 71?nm ZnO particles (ZnO71) due to the increased aggregation of latter particles. Glass transition temperatures were not significantly changed when both ZnO and SMA were incorporated. Degradation temperatures of the composites increased with the addition of ZnO particles compared with neat PS and slightly decreased with the incorporation of SMA compared with the nascent composite. Scanning electron microscopy (SEM) analysis showed the better dispersion and compatibility of ZnO particles in PS/ZnO composites with the addition of SMA especially at the content of 3?wt%.  相似文献   

10.
This study aims to investigate the thermo‐physical, mechanical, and thermal degradation properties of betel nut husk (BNH) fiber reinforced vinyl ester (VE) composites. These properties were evaluated as a function of fiber maturity, fiber content, and fiber orientation. Thermo‐physical properties were analyzed experimentally using a hot disk TPS method. The introduction of BNH was found to reduce the thermal conductivity of neat VE. The thermal conductivity and thermal diffusivity of BNH reinforced VE composites decreased with the increase in fiber content. Short fiber BNH reinforced VE composites showed the lowest thermal conductivity as compared to the unidirectional and random nonwoven composites. The TGA analysis shows lower resin transition peak for the BNH reinforced VE composites than the peak of neat VE. Fiber maturity had a notable effect on the flexural modulus of the BNH fiber reinforced VE composites. Incorporation of 10 wt% BNH fibers into the composite has increased the composites' flexural modulus by 46.37%. However, further increases in the fiber content reduced both flexural strength and modulus of the composites. POLYM. COMPOS., 37:2008–2017, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
This research emphasizes on the development of highly filled graphene‐polybenzoxazine composites and investigates thermal, electrical, and mechanical properties of the obtained composites for bipolar plate applications. The composition of graphene loading was achieved to be in the range of 10–60 wt%. The experimental results revealed that at the maximum graphene content of 60 wt% (44.8 vol%) in the polybenzoxazine, storage moduli at room temperature of the composites were considerably enhanced with the amount of the graphene, that is, from 5.9 GPa of the neat polybenzoxazine to about 25.1 GPa at 60 wt% of graphene. Glass transition temperatures (Tg) of the obtained composites were observed to be 174–188°C and the values substantially increased with increasing the filler contents. At 60 wt% of graphene content, thermal conductivity, as high as 8.0 W/mK, is achieved for the graphene‐filled polybenzoxazine. Furthermore, the flexural modulus and flexural strength of the composites were found to be as high as 18 GPa and 42 MPa, respectively. Water absorption of graphene filled‐composite is relatively low with the value of only about 0.06% at 24 h of water immersion. Additionally, electrical conductivity was measured to be 357 S/cm at maximum loading of the graphene. Therefore, the graphene‐filled composites based on polybenzoxazine are highly attractive as bipolar plates for polymer electrolyte membrane fuel cells applications. POLYM. COMPOS., 37:1715–1727, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
《Polymer Composites》2017,38(6):1215-1220
The mechanical properties of ultra‐high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were determined, and the effects of fiber surface treatment and fiber mass fraction on the mechanical properties of the composites were investigated. Chromic acid was used to modify the UHMWPE fibers, and the results showed that the surface roughness and the oxygen‐containing groups on the surface of the fibers could be effectively increased. The NR matrix composites were prepared with as‐received and chromic acid treated UHMWPE fibers added 0–6 wt%. The treated UHMWPE fibers increased the elongation at break, tear strength, and hardness of the NR composites, especially the tensile stress at a given elongation, but reduced the tensile strength. The elongation at break increased markedly with increasing fiber mass fraction, attained maximum values at 3.0 wt%, and then decreased. The tear strength and hardness exhibited continuous increase with increasing the fiber content. Several microfibrillations between the fiber and NR matrix were observed from SEM images of the fractured surfaces of the treated UHMWPE fibers/NR composites, which meant that the interfacial adhesion strength was improved. POLYM. COMPOS., 38:1215–1220, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
This is a comparative study between ultrahigh molecular weight polyethylene (UHMWPE) reinforced with micro‐ and nano‐hydroxyapatite (HA) under different filler content. The micro‐ and nano‐HA/UHMWPE composites were prepared by hot‐pressing method, and then compression strength, ball indentation hardness, creep resistance, friction, and wear properties were investigated. To explore mechanisms of these properties, differential scanning calorimetry, infrared spectrum, wettability, and scanning electron microscopy with energy dispersive spectrometry analysis were carried out on the samples. The results demonstrated that UHMWPE reinforced with micro‐ and nano‐HA would improve the ball indentation hardness, compression strength, creep resistance, wettability, and wear behavior. The mechanical properties for both micro‐ and nano‐HA/UHMWPE composites were comparable with pure UHMWPE. The mechanical properties of nano‐HA/UHMWPE composites are better compared with micro‐HA/UHMWPE composites and pure UHMWPE. The optimum filler quantity of micro‐ and nano‐HA/UHMWPE composites is found to be at 15 wt % and 10 wt %, separately. The micro‐ and nano‐HA/UHMWPE composites exhibit a low friction coefficient and good wear resistance at this content. The worn surface of HA/UHMWPE composites shows the wear mechanisms changed from furrow and scratch to surface rupture and delamination when the weight percent of micro‐ and nano‐HA exceed 15 wt % and 10 wt %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42869.  相似文献   

14.
In the present study, poly(lactic acid) (PLA), a biodegradable plastic, was melt‐blended with five weight percentages (10–50 wt%) of ethylene vinyl acetate (EVA) copolymer, a non‐biodegradable plastic, having a vinyl acetate content of 19 wt% and a melt flow index of 530 g/10 min, on a twin screw extruder, followed by an injection molding. The blends at 10 and 20 wt% EVA revealed a noticeably increased impact strength and strain at break over the pure PLA, and the blend at 10 wt% EVA exhibited the highest impact strength and strain at break. The 90/10 (wt%/wt%) PLA/EVA blend was then selected for preparing either single or hybrid composite with wood flour (WF) and wollastonite (WT). The filler loading was fixed at 30 parts by weight per hundred of resin throughout the experiment, and the WF/WT weight ratios were 30/0, 20/10, 15/15, 10/20, and 0/30. The prepared composites were examined for their mechanical and thermal properties, melt flow index, flammability, water uptake, and biodegradability as a function of composition. All the composites showed a filler‐dose‐dependent decrease in the impact strength and strain at break, but an increase in the tensile and flexural modulus (optimal at 0/30 WF/WT) and tensile and flexural strength (optimal at 30/0 WF/WT) as compared with the neat 90/10 (wt%/wt%) PLA/EVA blend. In addition, the melt flow index, char residue, anti‐dripping ability, water uptake, and biodegradability of the composites were also higher than those of the neat blend. J. VINYL ADDIT. TECHNOL., 25:313–327, 2019. © 2019 Society of Plastics Engineers  相似文献   

15.
This article deals with the usage of tamarind seed filler (TSF) as reinforcement in vinyl ester (VE) composites. The composite plates have been fabricated by compression molding machine with TSFs of varying wt% from 5 to 50 as reinforcement material, and their properties such as tensile, flexural, impact, hardness, water absorption, heat deflection tests, and thermogravimetric analysis are studied. The mechanical properties of TSF reinforced VE composites are optimum at 15 wt% filler. The tensile strength and flexural strength of TSF‐VE composites are estimated to be around 34.1 and 121 MPa, respectively. The better impact strength of TSF‐VE composites is found to be 14.02 kJ/m2, and barcol hardness can hold a value up to 42.33. Thermo gravimetric analysis and heat deflection test of TSF reinforced VE composite have improved the thermal stability. The fiber matrix interaction of the fractured mechanical testing specimen has been analyzed by scanning electron microscope. The TSF‐VE composites are used to fabricate the wheel hubcap of heavy‐duty buses, bus seat backrest cover, and silencer guard of the motorcycle. J. VINYL ADDIT. TECHNOL., 25:E114–E128, 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
Disposal of polyethylene used as carry bags is the greatest challenge increasing day by day. Composite materials were prepared by mixing Fly ash (FA) and nanostructured fly ash (NFA) from thermal power station as filler and blends of Waste polyethylene (WPE)(carry bags) collected from municipal solid waste (MSW) with virgin high‐density polyethylene (HDPE) as matrix. Different modifications were induced to improve the overall properties of these composites. At first, the WPE/HDPE blend matrix was modified by grafting with maleic anhydride (MA) and the composite prepared with FA/NFA. Then, the WPE/HDPE‐FA/NFA composite as a whole was treated with electron beam irradiation at 250 kGy radiation dose and finally the FA/NFA filler was treated with radiation dose of 250 kGy and the composite prepared. Significant enhancement in tensile strength, flexural strength, flexural modulus, and hardness are observed for MA modified and irradiated composites, the increase being more prominent in irradiated composites. Furthermore, an increase in storage/loss moduli with enhanced thermal stability was observed with the addition of FA/NFA and upon modifications. The analysis of the tensile fractured surfaces by scanning electron microscopy was in well correlation with the mechanical properties obtained. In summary, after analyzing the effects of the three different modifications on mechanical, dynamic mechanical and thermal properties, the irradiation on to the WPE/HDPE‐FA/NFA composites investigated was selected as the most appropriate for future applications. POLYM. COMPOS., 37:3256–3268, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
Ultrahigh‐molecular‐weight polyethylene/copper (UHMWPE/Cu) composites compatibilized with polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) were prepared by compression molding. The effects of the compatibilizer on the mechanical, thermal, and tribological properties of the UHMWPE/Cu composites were investigated. These properties of the composites were evaluated at various compositions, and worn steel surfaces and composite surfaces were examined with scanning electron microscopy and X‐ray photoelectron spectroscopy. The incorporation of PE‐g‐MAH reduced the melting points of the composites and increased their crystallinity to some extent. Moreover, the inclusion of the PE‐g‐MAH compatibilizer greatly increased the tensile rupture strength and tensile modulus of the composites, and this improved the wear resistance of the composites. These improvements in the mechanical and tribological behavior of the ultrahigh‐molecular‐weight‐polyethylene‐matrix composites with the PE‐g‐MAH compatibilizer could be closely related to the enhanced crosslinking function of the composites in the presence of the compatibilizer. Moreover, the compatibilizer had an effect on the transfer and oxidation behavior of the filler Cu particulates, which could be critical to the application of metallic‐particulate‐filled polymer composites in engineering. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 948–955, 2004  相似文献   

18.
《Polymer Composites》2017,38(9):1902-1909
In this paper, in order to investigate and predict the synergistic effect of the tetra‐needle‐shaped zinc oxide whisker (T‐ZnO) and boron nitride (BN) hybrid fillers in the thermal conductive high‐density polyethylene (HDPE) composites, the filler networks were studied through dynamic rheological measurement. Moreover, the crystallinity of the HDPE in the composites, and the thermal and electrical conductivity of the composites were also investigated. It was found that when the ratio of the BN and T‐ZnO in hybrid fillers was 20:10, the HDPE/hybrid fillers composite not only had the highest thermal conductivity but also can maintain the electrically insulating. Furthermore, the gel point of the HDPE/hybrid fillers composites was 11.2 wt%, and it was close to the 10 wt%. Therefore, the synergistic effect of the T‐ZnO and BN hybrid fillers in the HDPE/hybrid fillers composites can be successfully predicted through dynamic rheology date. Simultaneously, the Scanning electron microscope results showed that the T‐ZnO and BN particles can contact each other to form the thermal conductive paths so that the thermal conductivity of the HDPE can be enhanced through addition of the hybrid fillers. In addition, it was also found that the improved thermal conductivity of the HDPE/hybrid fillers composites was not because of a change in the crystallinity of the HDPE in the HDPE/hybrid fillers composites. POLYM. COMPOS., 38:1902–1909, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Epoxy resin (EP) is one of the main polymers in electrical and electronic applications. In this work, flame‐retardant epoxy resin composites based on aluminum diethylphosphinate (Al(DEP)) and aluminum methylethylphosphinate (Al(MEP) were prepared using aromatic amine 4, 4‐diaminodiphenylmethane as curing agent. The flammability, thermal degradation, flexural properties, and morphologies of composites were investigated with respect to the filler loading and filler type. Results showed that both Al(MEP) and Al(DEP) were efficient flame retardants for EP and a low dosage (15 wt%) is enough to achieve the important criterion UL 94 V‐0. Limiting oxygen index (LOI) of composites is increased with filler loading (phosphorus content) and reached of 32.2% for 15 wt% of Al(MEP) and 29.8 for 15 wt% of Al(DEP). The char formation and flexural modulus of composites are also improved by adding the two fillers. However, the flexural strength of all the composites decreased with increasing filler loading. In comparison with Al(DEP)/EP, Al(MEP)/EP provides a higher flammability, better thermal stability and char formation but inferior flexural properties. Scanning electron microscopy revealed that the dispersion of Al(DEP) filler in the EP matrix is more uniform and exhibits better compatibility with EP matrix, which in turn generates better flexural strength and higher modulus when compared with Al(MEP)‐filled EP composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
Rice husk ash (RHA) is an agrowaste byproduct resulting from the incineration of rice husks for power production; white RHA is ∼90 wt% or more silica, which makes it a potentially sustainable and inexpensive substitute for commercial (less “green”) silica filler. Past research on polypropylene (PP)‐RHA hybrids made by melt processing has yielded modest increments in Young's modulus, reduced yield strength, and drastic reductions in elongation at break relative to neat PP. Using the industrially scalable solid‐state shear pulverization (SSSP) process, PP‐RHA hybrids are made with 4–38 wt% RHA. As determined by microscopy and other methods, composites made by SSSP have much better RHA dispersion than composites reported in the literature made by twin‐screw extrusion. The superior dispersion leads to major enhancements in tensile modulus (up to 100% increases relative to neat PP) while maintaining the yield strength of neat PP and remarkably high values of elongation at break (e.g., 520% at 19 wt% RHA), far higher than composites made by melt processing. The properties of hybrids made by SSSP are competitive with and in some cases superior to those of PP hybrids made with commercial silica. The PP‐RHA hybrids also exhibit major increases in hardness, approaching that of polycarbonate in the case of a 38 wt% RHA hybrid. The 38 wt% RHA hybrid exhibits solid‐like rheology at low frequency. Nevertheless, all PP‐RHA hybrids made by SSSP exhibit viscosities at moderate to high shear rates that are little changed from that of neat PP. POLYM. COMPOS., 34:1211–1221, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号