首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tribological property of aluminium alloy is critical for its reliable operation in practical applications. In this paper, the tribological performance of laser‐textured 2024 aluminium alloy is studied in unidirectional sliding tests under boundary lubrication. The dimples were produced on the aluminium alloy surface by using a pulse Nd : YAG laser. The topographical microstructures of these laser‐induced textures were characterised by optical and scanning electron microscopy. In comparison with untextured surfaces, a significant improvement in friction behaviour was observed for the textured surfaces. The influences of dimples density on the tribological properties were investigated. Two types of oil with different viscosities were evaluated as lubricants. It was found that the beneficial effects of laser surface texturing are more pronounced at higher speed and load with higher viscosity oil. The optimum dimples density of 8.5% was found to have a lower friction coefficient. On basis of the experimental results, the mechanism of friction reduction and anti‐wear is proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Surface texturing by pulsed Nd:YAG laser   总被引:5,自引:0,他引:5  
Introducing specific textures on a tribological surface can contribute to friction reduction in sliding contacts. In the present paper, a pulsed Nd:YAG laser emitting at 1064 nm, was used against 100Cr6 steel samples in order to produce well-defined surface micro-pores, which can act as lubricant reservoirs, micro-hydrodynamic bearings as well as traps for wear debris. Due to the high flexibility of the laser system, structural features such as shape, size, density and depth can be varied easily by changing the laser parameters. To optimize the parameters of the laser surface texturing process, an investigation was performed using different pulse numbers, various pulse energies and two different modes (single- and multi-mode). The microtextures were characterized with optical microscopy, scanning electron microscopy (SEM) and by topography techniques. The relationship between the laser processing parameters and qualitative and quantitative profile of the micro-pores was studied. Tribological testing of laser textured surfaces was performed in a low frequency–long displacement reciprocating sliding wear tester under boundary lubrication and results compared to un-textured case. Tribological comparison of textured, textured and lapped, and untextured surfaces shows only minimal influence of texturing for contact conditions investigated.  相似文献   

3.
《Lubrication Science》2017,29(3):183-199
Under operating conditions which are unfavourable for lubrication, such as high load and low velocity, the use of textured surfaces significantly promotes the formation of a thick lubricant film and an improvement of the friction coefficient. This paper relates to the manufacture of textures using a photolithography and chemical etching process. Different surface geometries, texturing densities and depths were designed to analyse the influence of these parameters. The friction coefficient was measured in a ball‐on‐disc tribometer under different lubrication regimes, and the results have been used to develop an artificial neural network with texturing optimisation potential. © 2016 The Authors Lubrication Science published by John Wiley & Sons Ltd.  相似文献   

4.
An experimental study is presented to evaluate the influence of anisotropically shaped textures on the behaviour of sliding friction and sensitivity to sliding direction. The plate samples were textured with triangular sloped dimples using an ultrafast laser surface texturing technique. Reciprocating cylinder-on-plate tests were conducted with steel sliding pairs using mineral base oil as a lubricant to compare the tribological performance of reference non-textured specimen and dimpled samples. The dimples were designed with varying converging angles in the transverse yz plane and top-view xy plane. In this study, no dimple was fully covered in the contact area since the dimples size is much larger than the Hertzian line contact width. Stribeck style dynamic friction curves across boundary, mixed and hydrodynamic lubrication regimes were used to determine the benefit or antagonism of texturing. Observation of the directional friction effect of the anisotropic textures indicated that the converging shapes are beneficial for friction reduction, and the dimpled specimens have a lower friction coefficient particular under prevailing boundary lubrication conditions. It was also found that the real contact length variation rate is a major factor controlling the local friction response. The sloped bottoms of the textures produce effective converging wedge action to generate hydrodynamic pressure and contribute to the overall directional friction effects.  相似文献   

5.
为研究圆凹坑形表面织构在往复运动下的减摩性能,尤其是织构面积率对摩擦因数和润滑状态的影响,在UMT-Ⅲ型摩擦试验机上进行往复式摩擦试验.试验中采用的摩擦副材料为Cr12与45#钢,在45#钢上加工出面积率为2%、6%、10%的圆凹坑形织构.保持运动频率不变,在不同载荷下试验,研究织构面积率在不同载荷下的减摩性能;然后改变往复运动频率,在固定载荷下试验,采用频率参数作为速度参数计算动压参数,绘制Stribeck曲线,研究织构面积率对润滑状态的影响.结果表明:当载荷较小时,较大面积率的表面织构减摩效果较好,当载荷较大时,表面织构具有增大摩擦力的作用,即表面织构的减摩效果对载荷敏感;在较小的载荷下,面积率较大的表面织构可以在较低的运动频率下进入流体润滑状态.  相似文献   

6.
面接触条件下织构表面摩擦特性研究   总被引:7,自引:0,他引:7  
李媛  刘小君  张彦  刘焜 《机械工程学报》2012,48(19):109-115
为研究织构表面对面接触摩擦副摩擦特性的影响,设计和制造4个表面高度算术平均值相同、表面微凹坑面积占有率分别为7%、14%、21%、28% 的试件,选用HDM20端面摩擦磨损试验机,针对油润滑和脂润滑两种润滑剂,在不同载荷、转速等工况和不同摩擦副配对材料等条件下进行了试验研究,探讨表面形貌对摩擦特性的影响规律,并使用Talysurf CCI Lite 非接触式三维光学轮廓仪对试样进行三维表面测量,采用ISO25178定义的体积参数和连通性系数对三维表面形貌进行表征,从而得出表面体积参数及连通性系数与摩擦因数的关系。结果表明:在油润滑条件下表面形貌的微观结构特性对摩擦的影响要比脂润滑条件下的更显著;在钢对铜摩擦副条件下织构表面的摩擦因数变化比较复杂,在钢对钢摩擦副条件下织构表面的摩擦因数变化相对平稳;在不同的条件下,最优的表面微观结构特性也不同;将连通性系数和体积参数结合起来对表面形貌进行表征将更有利于表面微观结构特性的摩擦学设计。  相似文献   

7.
为了提高钛及钛合金钻具在超深钻探、深海钻探和外太空钻探工程中的减摩抗磨性能。利用激光表面加工技术在工业纯钛(TA2)表面制备了不同参数的点阵微织构。采用MS-T3000摩擦磨损试验机测试了微织构钛合金在不同粒度模拟月壤作用下的摩擦学性能。利用扫描电子显微镜和能谱分析仪分析磨痕形貌及元素含量。研究结果表明:当磨料粒度小于微织构点阵的直径时,磨料压入微织构点阵里,磨料具有滚动和滑动两种运动方式。当粒度大于微织构点阵的直径时,磨料不能完全压入微织构点阵里,磨料对微织构TA2表面产生了滑动犁削作用。由于两种磨料磨损的作用机理不同,同等条件下,小粒度的磨料作用下的微织构TA2的摩擦因数和磨损率较大粒度磨粒作用下的最大减少量分别为50%和53%。考虑磨料粒度与微结构的匹配性,可以大大降低摩擦减少磨损。  相似文献   

8.
An analytical model is developed to investigate a partially textured slider of infinite width with orientation parabolic grooves. The generating mechanism for hydrodynamic lubrication of the partial surface texturing in the sliding surface is similar to that of a step slider. By using the multigrid method, the hydrodynamic pressure generated by the partial surface texturing is obtained. The surface texturing parameters are numerically optimized to obtain maximum hydrodynamic effect in terms of the dimensionless average pressure for a given set of operating parameters. The results indicate that parameters such as groove orientation angle, depth, area density, and textured fraction have an obvious influence on the hydrodynamic pressure for partial surface texturing. However, the groove width has little or no effect on the dimensionless average pressure. The results of the study show that the hydrodynamic lubrication performance can be ameliorated by optimizing the surface texturing according to the operating parameters of the mechanical components.  相似文献   

9.
为改善人工髋关节表面的摩擦学性能,在人工髋关节表面设计球形凹坑微织构;建立人工髋关节微织构表面的流体动压润滑模型,利用CFD软件ANSYS Fluent对微织构表面流体动压进行数值分析,得到摩擦副表面相对滑动时产生的油膜平均承载力以及摩擦因数,并分析表面微织构参数对摩擦学性能的影响。结果表明:在给定的织构参数范围内,平均承载力随深径比的增加呈现出先降低后升高再降低的趋势,随面积密度的增加呈先升高再降低的趋势;摩擦因数随深径比和面积密度增加的变化趋势与平均承载力相反;织构的最优参数分别为深径比0.06,面积密度25%。因此,在人工髋关节表面设置合适参数的球形凹坑微织构可以提高油膜平均承载力和降低摩擦因数,从而起到减小关节的摩擦磨损提高人工关节使用寿命的作用。  相似文献   

10.
Surface texturing has been recognized to be very efficient in modifying the tribological performances of sliding surfaces. In the present article, a three-dimensional hydrodynamic lubrication model of the incompressible Newtonian fluid is proposed on the textured surface with a single spherical cap microdimple based on the full Navier-Stokes equation. The three-dimensional pressure field and velocity field of lubrication film are obtained by employing the finite volume method (FVM). The effects of geometric parameters and Reynolds number on pressure field, load-carrying capacity, friction force, and friction coefficient are investigated. Numerical simulation led the authors to conclude that the load-carrying capacity of the lubrication film is monotonously enhanced with increasing microdimple width and Reynolds number, and a reverse tendency is obtained for friction force and friction coefficient. The dimensionless optimum microdimple depth increases with the increase of the width and decreases with the increase of the Reynolds in the range of 0.80–2.00, which is responsible for the largest load-carrying capacity and the smallest friction coefficient. It has also been found that the optimum depth becomes a critical value to produce a vortex in the bottom of the dimple. Further analysis indicates that the optimum dimple depth becomes a transition of lubrication mode from hydrodynamic to mixed lubrication for a textured surface with a fixed microdimple.  相似文献   

11.
复合工艺制备的表面微凹坑织构的摩擦性能研究   总被引:2,自引:0,他引:2  
在构建的激光电化学复合微加工系统上,采用皮秒脉冲激光辐照与电解刻蚀复合加工方法在7075铝合金表面制备出不同尺寸的阵列凹坑微织构。采用共聚焦显微镜观测复合加工织构试样表面形貌,采用MFT-5000型RTEC摩擦磨损试验机研究润滑条件下凹坑织构的摩擦学性能,并探讨直径、深度、面积密度对减摩性能的影响。结果表明:复合加工工艺制备的表面微织构具有良好的表面形貌;润滑条件下材料表面的凹坑型织构能显著改善其摩擦学性能,相比光滑表面最高可降低摩擦因数30%;在实验参数范围内,凹坑的直径与面积密度对材料表面摩擦性能影响较大,凹坑深度对摩擦性能影响较小。  相似文献   

12.
In this study, we propose the use of laser surface texturing methods to improve the wear resistance of diamond-like-carbon (DLC) coatings. First, the application of dimples perpendicular to an engineering surface is introduced by using laser in a controlled manner. The solid DLC lubricant is subsequently deposited on the textured surface using the magnetron sputtering technique. In the experiments, the dimple densities were varied from 0 to 30%, and the dimple diameters were varied from 40 to 300 μm. The effect of the geometric parameters on the wear performance was studied using a reciprocating sliding-wear tester under oil lubrication conditions. The results showed that the DLC coatings with the appropriate dimple density (10%) and diameter (∼100 μm) demonstrated an obvious improvement in terms of the friction coefficient and wear rate compared with that of the un-textured DLC coatings. The experimental treatment produced respective reductions of 20% in friction and nearly 52% reduction of wear rate. This improvement could be explained by the action of reservoirs that enhance lubricant retention and trap the wear particles during sliding motions. In addition, the relationship between the dimple diameter, the contact width ratio and the wear performance is discussed.  相似文献   

13.
研究仿生硅藻的多级孔结构——矩形与半球型结合的复合型织构对平行滑块润滑性能的影响。通过建立矩形-半球型的复合型织构单个单元模型,采用双向流固耦合的方法,分析两滑动表面在不同面积率和织构深度条件下的摩擦润滑性能。结果表明:织构表面摩擦因数随着面积率的增大而减小,承载力随着面积率的增大先增大后减小,在考虑摩擦性能与承载力的条件下,矩形-半球型复合型织构的面积率应控制在25%~36%之间;在确定合适的面积率的条件下,还应考虑不同的织构深度所产生的旋涡的影响。  相似文献   

14.
Understanding friction behavior of human skin is indispensable in order to optimize surfaces and materials in contact with the skin. The coefficient of friction (COF) for different materials contacting against the skin is mainly influenced by the nature of the materials, mechanical contact parameters, and physiological skin conditions. The aim of the present research work was to study the grip effect of two different polymeric materials by producing different textured patterns using a 3D printing microfabrication technique and a replication technique. It was found that under the same contact conditions, a difference in the friction amplitude exists between the two different polymeric materials and that positive texturing, which consists of high relief or protrusions, showed higher COFs than negative texturing, consisting of low relief, holes, or dimples, which showed a decrease in friction as the textured pattern area density increased.  相似文献   

15.
This paper reports a novel work on the synergetic effects of microscale surface texturing and lubricant friction modifier additive of molybdenum dialkyldithiophosphate (MoDDP) subject to both flooded and starved lubrication conditions. The experiments were performed on reciprocating ball-on-disk friction in GTL8 base oil with and without MoDDP. In the flooded lubrication condition, the test results demonstrated that the presence of the MoDDP additive contributed to lower friction coefficients and also more pronounced effect of surface textures on friction than in the case of the bare base oil. In the starved lubrication experiments, textured and texture-free surfaces in the oils with and without MoDDP additive were tested until an abrupt rising of friction coefficient was detected. The results showed that the magnitude of friction coefficient before terminating each test was the almost same for various tests, while the endurance time in different test conditions was significantly different. The textured surface exhibited longer endurance time than the texture-free surface, especially when the MoDDP additive was used. The mechanism of the synergetic effects of surface textures and MoDDP additive has been discussed based on the experimental observations in the following sections. This study provides a new idea for the application of surface texture in boundary lubrication when lubricant additive is contained in the lubricating oils.  相似文献   

16.
Laser surface texturing (LST) is an emerging, effective method for improving the tribological performance of friction units lubricated with oil. In LST technology, a pulsating laser beam is used to create thousands of arranged microdimples on a surface by a material ablation process. These dimples generate hydrodynamic pressure between oil-lubricated parallel sliding surfaces. The impact of LST on lubricating-regime transitions was investigated in this study. Tribological experiments were carried out on pin-on-disk test apparatus at sliding speeds that ranged from 0.15 to 0.75 m/s and nominal contact pressures that ranged from 0.16 to 1.6 MPa. Two types of oil with different viscosities (54.8 cSt and 124.7 cSt at 40°C) were evaluated as lubricants. Electrical resistance between flat-pin and laser-textured disks was used to determine the operating lubrication regime. The test results showed that laser texturing expanded the range of speed-load parameters for hydrodynamic lubrication. LST also reduced the measured friction coefficients of contacts that operated under the hydrodynamic regime. The beneficial effects of laser surface texturing are more pronounced at higher speeds and loads and with higher viscosity oil.  相似文献   

17.
The paper focuses on modeling a hydraulic elastomer seal cross-section for improving the effect of surface texturing in Soft Elasto Hydrodynamic Lubrication. The model consists of textured elastomer seal having a cross section combined of composite tapered and flat land, sliding relative to a rigid smooth counterpart in the presence of viscous lubricant. The hydrodynamic lubrication and the elasticity problems are solved simultaneously. A parametric analysis is performed to obtain the optimum surface texturing parameters and the improved cross section. Ranges of different possible lubrication regimes are also discussed.  相似文献   

18.
Recent advances in smart surface engineering and coating technologies offer unique possibilities for better controlling friction and wear under boundary or marginally lubricated rolling, sliding or rotating contact conditions. Specifically, such coatings can be tailored to meet the increasingly multi-functional application needs of future engine systems by enabling them to operate in lower viscosity oils with reduced sulfur and phosphorous. Using these technologies, researchers have already pioneered the development of a variety of nano-composite and super-hard coatings providing longer tool life in demanding machining and manufacturing applications. The same technologies can also be used in the design and development of novel coating architectures providing lower friction and wear under boundary-lubricated sliding conditions. For example, such coatings can be tailored in a very special way that while one of the phases can favorably react with certain additives in engine oils to result in an ideal chemical boundary film; the other phases can provide super-hardness and hence resists wear and scuffing. Because of their very dense microstructure and high chemical inertness, these coatings can also provide superior protection against oxidation and corrosive attacks in aggressive environments. The use of solid lubricant coatings may also improve the tribological properties of sliding contact interfaces under boundary lubricated sliding conditions. When fluid and boundary films fails or is broken down, such coatings can carry the load and act as a back-up lubricant. Other smart surface technologies such as laser texturing and/or dimpling, laser-glazing and -shotpeening have also become very popular in recent years. In particular, laser texturing of control or coated surfaces have opened up new possibilities for further manipulation of the lubrication regimes in classical Stribeck diagrams. Controlling dimple size, shape, orientation, and density, researchers were able to modify both the width and the height of the boundary lubrication regimes and thus achieve lower friction and wear at sliding and rotating contact interfaces. Overall, smart surface engineering and coating technologies have matured over the years and they now become an integral part of advanced machining and manufacturing applications. They can also be used to meet the increasingly stringent and multi-functional application needs of demanding tribological applications. In this paper, selected examples of recently developed novel surface engineering and coating technologies are introduced, and the fundamental tribological mechanisms that control their friction and wear behavior under boundary lubrication regimes are presented.  相似文献   

19.
The employment of surface texturing for improved tribological contacts has spread over the years. The possibilities of designing and manufacturing textured surfaces with predetermined geometries have multiplied as well as the need of performing experimental laboratory tests before applying the surfaces in an industrial context. In this paper, a number of experimental tests were performed using a novel test rig, called axial sliding test, simulating the contact of surfaces under pure sliding conditions. The aim of the experiments is to evaluate the frictional behavior of a new typology of textured surfaces, the so-called multifunctional surfaces, characterized by a plateau area able to bear loads and a deterministic pattern of lubricant pockets. Six surface typologies, namely three multifunctional and three machined using classical processes, were chosen to slide against a mirror-polished counterpart. A number of experiments were carried out at different normal pressures employing for all specimens the same reciprocating movement and the same lubrication. The measured friction forces were plotted against the incremental normal pressure, and the friction coefficients were calculated. The results comparison showed clearly how employing multifunctional surfaces can reduce friction forces up to 50 % at high normal loads compared to regularly ground or turned surfaces. Friction coefficients approximately equal to 0.12 were found for classically machined surfaces, whereas the values were 0.06 for multifunctional ones. All the specimens were characterized before and after testing. Wear occurrence was not detected on the tested surfaces except for the mirror-polished one which underwent all the experiments.  相似文献   

20.
《Tribology International》2012,45(12):2059-2066
The paper focuses on modeling a hydraulic elastomer seal cross-section for improving the effect of surface texturing in Soft Elasto Hydrodynamic Lubrication. The model consists of textured elastomer seal having a cross section combined of composite tapered and flat land, sliding relative to a rigid smooth counterpart in the presence of viscous lubricant. The hydrodynamic lubrication and the elasticity problems are solved simultaneously. A parametric analysis is performed to obtain the optimum surface texturing parameters and the improved cross section. Ranges of different possible lubrication regimes are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号