首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The asymmetric 3-oxa-pentamethylene bridged dinuclear titanocenium complex (CpTiCl2)2 (η5-C9H6(CH2CH2 OCH2CH2)-η5-C5H3 CH3) (1) has been prepared, characterized by 1H NMR spectroscopy and elemental analysis, and after activation with MAO tested as a homogenous catalyst for the polymerization of ethylene. The results show that the catalytic activity of 1 as well as the molecular weight of the produced polyethylene are higher than those using the alkylidene bridged asymmetric dinuclear metallocenes (CpTiCl2)2 (η5-C9H6(CH2) n-η5-C5H4), n = 3 (4), 4 (5). The molecular weight distribution of polyethylene produced with 1/MAO reaches 11.00 and the HT-GPC curve shows a bimodal distribution. The melting point of the polyethylene obtained by 1/MAO is higher than 135 °C and the 13C NMR spectrum of PE shows only one strong signal at 30 ppm for the methylene units indicating a highly linear and crystalline polymer.  相似文献   

2.
Two asymmetric alkylidene‐bridged dinuclear titanocenium complexes (CpTiCl2)25‐η5‐C9H6(CH2)nC5H4), 1 (n = 3) and 2 (n = 4) have been prepared by treating two equivalents of CpTiCl3 with the corresponding dilithium salts of the ligands C9H7(CH2)nC5H5 (n = 3, 4). Additionally, Ti(η55n‐BuC5H4C5H5)Cl2 (3) and Ti(η55n‐BuC9H6C5H5)Cl2 (4) were synthesized as corresponding mononuclear complexes. All complexes were characterized by 1H, 13C NMR, and IR spectroscopy. Homogenous ethylene polymerization catalyzation using those complexes has been conducted in the presence of methylaluminoxane (MAO). The influences of reaction parameters, such as [MAO]/[Cat] molar ratio, catalyst concentration, ethylene pressure, temperature, and time have been studied in detail. The results showed that the catalytic activities of both dinuclear titanocenes were higher than those of the corresponding mononuclear titanocenes. Although the two dinuclear complexes were different in only one [CH2] unit, the catalytic activity of 2 was about 50% higher than that of 1; however, the molecular weight of polyethylene (PE) obtained by 2 was lower than that obtained from 1. The molecular weight distribution of PE produced by these dinuclear complexes reached 6.9 and 7.3, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3317–3323, 2006  相似文献   

3.
An asymmetric 3‐oxa‐pentamethylene bridged dinuclear titanocenium complex (CpTiCl2)25‐η5‐C9H6(CH2CH2OCH2CH2)C5H4) ( 1 ) has been prepared by treating two equivalents of CpTiCl3 with the corresponding dilithium salts of the ligand C9H7(CH2CH2OCH2 CH2)C5H5. The complex 1 was characterized by 1H‐, 13C‐NMR, and elemental analysis. Homogenous ethylene polymerization catalyzed using complex 1 has been conducted in the presence of methylaluminoxane (MAO). The influences ofreaction parameters, such as [MAO]/[Cat] molar ratio, catalyst concentration, ethylene pressure, temperature, and time have been studied in detail. The results show that the catalytic activity and the molecular weight (MW) of polyethylene produced by 1 /MAO decrease gradually with increasing the catalyst concentration or polymerization temperature. The most important feature of this catalytic system is the molecular weight distribution (MWD) of polyethylene reaching 12.4, which is higher than using common mononuclear metallocenes, as well as asymmetric dinuclear titanocene complexes like [(CpTiCl2)25‐η5‐C9H6(CH2)nC5H4)] (n = 3, MWD = 7.31; n = 4, MWD = 6.91). The melting point of polyethylene is higher than 135°C, indicating highly linear and highly crystalline polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
改进的催化剂的乙烯聚合动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene. In particular, two types of catalysts were investigated, which were N-catalyst (BRICI) and improved polyethylene catalyst. The effects of catalyst structure on kinetic behavior were examined. The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays (EDAX), and morphologies of catalyst particles and polymer products were examined by scanning electron microscope (SEM). Hydrogen response and copolymerization performance were investigated and compared with the two catalysts. The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented. The improved polyethylene catalyst showed higher activity, better hydrogen response and copolymerization performance.  相似文献   

5.
A fluorinated FI Zr-based catalyst of bis[N-(3,5-dicumylsalicylidene)-2′,6′-flouroanilinato]zirconium(IV) dichloride was prepared and used for polymerization of ethylene. It was revealed that ortho-F-substituted phenyl ring on the N electronically plays a key role in the suppression of chain transfer reactions especially β-hydride transfer which resulted in an increase in the molecular weight of the obtained polymer and moderation of the catalyst activity as well. Methylaluminoxane (MAO) and triisobuthylaluminum (TIBA) were used as a cocatalyst and a scavenger, respectively. The catalyst showed the maximum activity at about [Al]:[Zr] = 32000:1 M ratio and further addition of MAO did not affect the activity of the catalyst. Ortho-F not only impressed the activity, but also reduced the [Al]:[Zr] molar ratio needed to reach the highest activity in comparison with the similar non-fluorinated FI catalysts. The highest activity of the prepared catalyst was obtained at 35 °C. At the monomer pressure of 3 bars polyethylene was obtained with the viscosity average molecular weight (M v) of 1.3 × 106 indicating the dramatic effect of ortho-F substitution on the polymerization mechanism. The polymerization was carried out using different amounts of hydrogen. Neither the activity of the catalyst nor the viscosity average molecular weight (M v) of the obtained polymer was sensitive to the hydrogen concentration. However, higher amount of hydrogen could slightly increase the activity of the catalyst.  相似文献   

6.
A kinetic study of a syndiospecific polymerization was performed with two kinds of catalysts: Cp*Ti(O(C6H4)CMe2(C6H4)O)TiCp* [bimetallic system] and Cp*Ti(OMe)3 [monometallic system]. The purpose of this study was to determine the reasons behind the high activity of a bimetallic catalyst system. The active site structures of the two kinds of catalysts appears to be similar to the cationic Ti [III] species having η5‐pentamethylcyclopentadienyl ligand, while the rate of the activation process of the bimetallic catalyst was found to be higher than that of the monometallic catalyst. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
A novel MgCl2/SiO2‐supported Ziegler–Natta catalyst was prepared using a new one‐pot ball milling method. Using this catalyst, polyethylenes with different molecular weight distributions were synthesized. The effects of the [Si]/[Mg] ratio, polymerization temperature and [Al]/[Ti] ratio on the catalytic activity, the kinetic behaviour and the molecular weight and the polydispersity of the resultant polymer were studied. It was found that the polydispersity index of the polymer could be adjusted over a wide range of 5–30 through regulating the [Si]/[Mg] ratio and polymerization temperature, and especially when the [Si]/[Mg] ratio was 1.70, the polydispersity index could reach over 25. This novel bi‐supported Ziegler–Natta catalyst is thus useful for preparing polyethylene with a required molecular weight distribution using current equipment and technological processes. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
Vanadium catalyst systems (SIL13A(B)/V) for ethylene polymerization were obtained by immobilization of the Cp2VCl2 precursor (V) in the ionic liquid 1‐[3‐(triethoxysilyl)propyl]pyridinium chloride (IL), modified by AlCl3 and AlEtCl2 (A) or AlEt2Cl (B), and supported on three types of silica carrier S1–3. The properties of the ionic liquid supports were determined using Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller measurements, scanning electron microscopy and elemental analysis. The best results (above 2 tons PE (mol V)?1 (0.5 h)?1) were obtained using the catalyst system SIL3B/V. Addition of ethyl trichloroacetate is possible in the ionic liquid medium and it further increases the activity up to 7 tons PE (mol V)?1 (0.5 h)?1. In contrast, application of the imidazolium ionic liquid to the SIL system or application the analogous catalyst system without the ionic liquid results in lower activities. The obtained polyethylene (PE) is a linear polymer, with molecular weight (Mw) of over 106 g mol?1 and molecular weight distribution (Mw/Mn) in the range 1.6–1.9, and has a characteristic fluffy or fibrous shape. In contrast, the PE samples obtained using the systems without ionic liquid reveal broader Mw/Mn (2.5–3.7) and replicate the support morphology. © 2016 Society of Chemical Industry  相似文献   

9.
A new dinuclear ruthenium complex 1 (L1[Ru(bda)2(picoline)]2) based on Ru–bda (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid) and dipyridyl xanthene (L1 = 4,5-dipyridyl-2,7-di-tert-butyl-9,9-dimethyl xanthene) ligand was synthesized to probe the catalytic oxidation of water. An oxygen evolution experiment displays a low catalytic water oxidation activity with a first-order reaction kinetic mechanism. The result indicates that the OO bond formation of the dinuclear catalyst 1 follows a water nucleophilic attack pathway rather than a radical coupling pathway. The most plausible interpretation is that the steric hindrance effects of the L1 and bda ligands lead to a disadvantage in forming the face-to-face configuration of the two active sites in a one dimer molecule.  相似文献   

10.
L.L Böhm 《Polymer》1978,19(5):553-561
The suspension polymerization of ethylene using a highly active Ziegler-Natta catalyst has been investigated. It has been shown that, under appropriate experimental conditons, the monomer transport is hindered neither by pore diffusion inside the suspended particle, nor by film diffusion at the surface of the suspended particle. It was found that there exists an extraordinarily high number of active sites, which at 85°C is in the range of about 70% of all titanium atoms. On the other hand, the overall propagation rate constant has the same order of magnitude as that published for some other Ziegler-Natta catalysts.  相似文献   

11.
Hybrid composite of polyaniline metal oxide composite, polyaniline‐dodecyl hydrogen sulfate salt with ferric oxide, was prepared for the first time via simple one‐step process of oxidizing aniline with ferric tris(dodecyl sulfate). Ferric tris(dodecyl sulfate) acts as an oxidant, emulsifier, dopant for polyaniline and also source of ferric oxide. Polyaniline salt composites were prepared via aqueous, emulsion, and interfacial polymerization pathways. Polyaniline salt composite was successfully demonstrated as polymer based solid acid catalysts in the ring‐opening polymerization of ε‐caprolactone for the first time. This methodology gave low molecular weight poly(ε‐caprolactone) (MW‐4035) with highly crystalline polymer of flower petals like morphology in 52 wt% yield (with respect to the amount of ε‐caprolactone used). Advantages of this methodology are the use of easily synthesizable, easily handlable, recyclable, cheaper, and eco‐friendly nature of the catalyst. POLYM. ENG. SCI., 55:2245–2249, 2015. © 2015 Society of Plastics Engineers  相似文献   

12.
研究了以新型含镁化合物为载体的HQ型聚丙烯高效球形催化剂的液相本体聚合,考察了聚合温度,n(Al)/n(Ti),n(Si)/n(Ti),外给电子体种类,氢气用量对催化剂催化性能的影响。结果表明:该催化剂具有良好的氢调敏感性和立体定向性。最适宜的聚合条件:反应温度为70℃,n(Al)/n(Ti)为481.0,外给电子体为甲基环己基二甲氧基硅烷,n(Si)/n(Ti)为19.2。在此条件下,HQ型催化剂的活性达34.0 kg/g,聚丙烯等规指数为97.9%以上。  相似文献   

13.
《Catalysis communications》2007,8(8):1209-1213
Nano-sized and micro-sized silica particles were used to support Cp2ZrCl2/MAO catalyst for ethylene polymerization. Nano-sized catalyst exhibited much better ethylene polymerization activity than micro-sized catalyst. At the optimum temperature of 60 °C, nano-sized catalyst’s activity was 4.35 times the micro-sized catalyst’s activity, which was attributed to the large specific external surface area, the absence of internal diffusion resistance, and the better active site dispersion for the nano-sized catalyst. Polymers produced were characterized with SEM, XRD, DSC, and densimeter. SEM indicated that the resulting polymer morphology contained discrete tiny particles and thin long fiberous interlamellar links.  相似文献   

14.
A supported iron‐based diimine catalyst (SC) was prepared by immobilization of 2,6‐bis[1‐(2,6‐diisopropylphenylimino)ethyl]pyridine iron chloride (I) on silica and employed in ethylene polymerization. The kinetic behavior of ethylene polymerization with SC was studied. The effects of the Al/Fe molar ratio, reaction temperature, and cocatalyst on the catalytic activity as well as the melting temperature, molecular weight, and morphology of the polymers obtained were also investigated. The results showed that good catalytic activities can be obtained even with a small amount of the cocatalyst methylaluminoxane (MAO) or triethylaluminum (AlEt3). The polyethylenes obtained with a supported catalyst had higher molecular weight, higher melting temperature, and better morphology than those obtained with a homogeneous catalyst. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 466–469, 2003  相似文献   

15.
The effects of the Al/Ti ratio and external donor (ED) on the catalytic activity and kinetics of propene polymerization catalyzed by a spherical Ziegler‐Natta (Z‐N) catalyst were investigated. The preparation conditions of the catalyst play an important role in the polymerization kinetics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3737–3740, 2003  相似文献   

16.
L.L Böhm 《Polymer》1978,19(5):562-566
This paper deals with molecular weight regulation and molecular weight distribution in ethylene polymerization, using a highly active Ziegler-Natta catalyst. The molecular weight regulation can be described by equations derived in a previous paper. The development of the molecular weight distribution with reaction time showed that there must exist active sites with an overall propagation rate constant of at least 2.9 × 103 dm3/mol sec at 85°C. This value is higher by a factor of approximately 40 than the value determined by kinetic experiments.  相似文献   

17.
在实验室小试气相聚合釜中对铬/钒双金属催化剂进行乙烯聚合评价,考察了不同聚合温度和压力时催化剂的性能,研究了不同条件下催化剂的动力学行为,并将其聚合动力学曲线与用工业铬系催化剂的进行了比较。结果表明:随着聚合温度升高,用铬/钒双金属催化剂制备的聚乙烯的相对分子质量减小,熔体流动速率增大,在所研究聚合温度范围内铬/钒双金属催化剂对温度更敏感;随着聚合压力增大,催化剂活性显著提高,聚乙烯相对分子质量增加;聚合动力学曲线与铬系催化剂不同,聚合反应速率先增大再降低最后逐渐达到平稳。  相似文献   

18.
制备了一种新型高氢调敏感性乙烯淤浆聚合用催化剂(简称SEL催化剂)。考察了SEL催化剂的组成、粒子形态,催化乙烯均聚合与共聚合的性能,以及用其制备的聚乙烯的性能,并与商业化的同类型进口催化剂(简称参比催化剂)进行了对比。结果表明:SEL催化剂中钛含量高而镁含量低,粒径分布窄,颗粒形态规整;SEL催化剂催化乙烯聚合时氢调敏感性好,氢气分压为0.48 MPa,乙烯分压为0.25 MPa时,聚乙烯熔体流动速率达226.10g/10 min;SEL催化剂催化乙烯与1-己烯共聚合的性能和聚乙烯粉料中细粉含量等均优于参比催化剂。  相似文献   

19.
An iron‐based catalyst of 2,6‐bis‐[1‐(2‐methylphenylimino)ethyl]pyridine iron dichloride was prepared. The ligand was prepared using 2,6‐diacetylpyridine as the starting chemical under controlled conditions. The preparation procedure was followed using 13C‐NMR, 1H‐NMR, FT‐IR, MS (mass spectroscopy), and elemental analysis methods. The homogeneous polymerization of ethylene was carried out using the prepared catalyst in toluene media. Methyl aluminoxane (MAO) was used as a cocatalyst. The effect of the [Al] : [Fe] molar ratio, polymerization temperature, and monomer pressure of 202,000 to 454,500 Pa on the polymerization behavior were studied. The highest activity of the catalyst was obtained at 30°C, the activity decreased with increasing temperature, while increasing pressure linearly increased its activity. The molecular weight distribution of the polyethylene obtained was 1.25 to 1.72. A weight average molecular weight of 7.1 × 104 and 1.5 × 103 were obtained. The crystallinity of the polymer was about 19% and its melting point was about 65°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1517–1522, 2007  相似文献   

20.
A kinetic study of ethylene homopolymerization is conducted with a supported unbridged metallocene catalyst in a slurry reactor. The effects of operational parameters such as the reaction temperature and pressure on kinetics are investigated. The kinetic parameters which have been determined for this particular catalyst from previous gas phase studies are used in a slurry reactor model to predict the polymerization behavior under various reaction conditions. The experimental data compare favorably with the predictions from this model. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2901–2917, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号