首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The effect of glass fiber (GF) on the electrical resistivities of polyoxymethylene (POM)/maleic anhydride‐grafted polyethylene (MAPE)/multiwalled carbon nanotube (MWCNT) composites is investigated. The POM/MAPE/MWCNT composites at a MWCNT loading of 0.75% are nonconductive because most of MWCNTs are isolated in the MAPE islands, and their electrical resistivities decrease significantly after the addition of GF because of the formation of MAPE‐coated GF structure, which facilitates the formation of conductive paths and was confirmed by field emission scanning electron microscopy (FESEM). The formation of MAPE‐coated GF structure is attributed to the interaction between GF and MAPE during melt compounding, as contrasted by the uncoated GF using high‐density polyethylene (HDPE) instead of MAPE. Nonconductive POM/5–20% MAPE/0.75% MWCNT composites become conductive upon the addition of 20% GF. This preparation method for conductive materials can be generalized to POM/5–20% maleic anhydride‐grafted polypropylene (MAPP)/0.75% MWCNT composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41794.  相似文献   

2.
Long glass fiber (LGF)‐reinforced thermoplastic polyurethane (TPU) elastomers and polyoxymethylene (POM) (LGF/TPU/POM) composites were prepared by using self‐designed impregnation device. Dynamic mechanical properties of the LGF/TPU/POM composites have been investigated by using dynamic mechanical thermal analysis. The results indicated that the storage modulus and glass transition temperature of the composites increase with increasing the glass fibers content and scanning frequencies. In addition, the Arrhenius relationship has been used to calculate the activation energy of α‐transition of the LGF/TPU/POM composites. The thermal stability of the LGF/TPU/POM composites was investigated by thermogravimetric analysis. The consequence demonstrated that the thermal stability increase with augmenting the content of glass fibers. The mechanical properties of the composites are investigated by a universal testing machine and a ZBC‐4 Impact Pendulum. The results demonstrated the mechanical properties of the composites aggrandize with augmenting the glass fibers content. The good dispersion of the LGFs in the matrix resins is obtained from scanning electron micrographs. POLYM. COMPOS., 35:2067–2073, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
聚氨酯/纳米碳酸钙改性聚甲醛的研究   总被引:5,自引:1,他引:4  
采用机械共混方法,制备了聚甲醛/热塑性聚氨酯/纳米碳酸钙(POM/TPU/nano-CaCO3)复合材料。研究了TPU/nano-CaCO3配比及用量对复合材料力学性能的影响,并用差热分析仪(DSC)及偏光显微镜(PLM)对复合材料的结晶性能和微观形态结构进行了分析。结果表明:当TPU与nano-CaCO3的总用量为10份,其中TPU与nano-CaCO3的质量比为7:3时,体系的缺口冲击强度出现最大值12.84kJ/m2,比纯POM提高了88.5%。同时TPU和nano-CaCO3的加入降低了POM的结晶度,缩小了球晶尺寸。  相似文献   

4.
将经γ氨丙基三乙氧基硅烷(KH550)处理后的多壁碳纳米管(MWCNTs)接枝到玻璃纤维(GF)表面,制成GF-MWCNTs复合填料,通过双螺杆挤出机熔融共混制备出聚甲醛(POM)/GF-MWCNTs复合材料,并对其力学性能、热性能及电性能进行了测试。结果表明,GF-MWCNTs添加量较低时,复合材料的拉伸强度和缺口冲击强度都有所提高,且分别在3 %(质量分数,下同)和1 %时达到最大值,之后则随着填料含量的增加而不断降低;当GF-MWCNTs的添加量达到10 %时,复合材料的拉伸强度和缺口冲击强度已然低于纯POM;加入GF-MWCNTs提高了复合材料的热稳定性,使POM的结晶温度和结晶度提高;GF-MWCNTs能降低复合材料的体积电阻率,但由于未在POM基体中形成逾渗网络,复合材料导电性提高并不明显。  相似文献   

5.
The conductive polyamide 66 (PA66)/carbon nanotube (CNT) composites reinforced with glass fiber‐multiwall CNT (GF‐MWCNT) hybrids were prepared by melt mixing. Electrostactic adsorption was utilized for the deposition of MWCNTs on the surfaces of glass fibers (GFs) to construct hybrid reinforcement with high‐electrical conductivity. The fabricated PA66/CNT composites reinforced with GF‐MWCNT hybrids showed enhanced electrical conductivity and mechanical properties as compared to those of PA66/CNT or PA66/GF/CNT composites. A significant reduction in percolation threshold was found for PA66/GF‐MWCNT/CNT composite (only 0.70 vol%). The morphological investigation demonstrated that MWCNT coating on the surfaces of the GFs improved load transfer between the GFs and the matrix. The presence of MWCNTs in the matrix‐rich interfacial regions enhanced the tensile modulus of the composite by about 10% than that of PA66/GF/CNT composite at the same CNT loading, which shows a promising route to build up high‐performance conductive composites. POLYM. COMPOS. 34:1313–1320, 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
采用硅烷偶联剂γ?氨丙基三乙氧基硅烷(KH550)、γ?(2,3?环氧丙氧)丙基三甲氧基硅烷(KH560)和高分子増容剂M分别对玻璃纤维增强聚甲醛复合材料(POM/GF)进行增容改性,并通过力学性能测试、扫描电子显微镜、旋转流变仪以及差示扫描量热仪探究增容剂类型及其含量对POM/GF复合材料的力学性能、界面形貌、流变行...  相似文献   

7.
用弹性体和CaCO3复合改性POM。采用TPU为增韧剂,CaCO3为增强剂,研究了加工方法、组成比、填料用量、粒径及分散形态等因素对复合材料性能尤其是冲击韧性的影响。结果表明,两步法制备复合材料的冲击韧性大大高于一步法;且纳米级CaCO3填充复合材料的综合性能优于其它粒径大小的填料;适量的弹性体及无机纳米填料的加入利于获得较好的增韧效果,当弹性体用量约为10%,CaCO3用量为3%时,与纯POM相比,冲击强度提高了3倍,弯曲模量与纯POM接近。  相似文献   

8.
毛晨曦 《应用化工》2014,(12):2171-2173,2176
使用环氧聚合型扩链剂作为POM/TPU共混物的相容剂,研究其对POM/TPU共混物的流变性能、力学性能、结晶性能和耐热性的影响。结果表明,添加环氧聚合型扩链剂后,POM/TPU共混物的熔体流动速率先升高然后降低;冲击强度提高,断裂伸长率大幅提高;结晶度先升高后降低;热变形温度提高。  相似文献   

9.
采用双螺杆熔融共混的方法,以4种不同的混合顺序,制备了聚甲醛/热塑性聚氨酯弹性体/纳米碳酸钙(POM/TPU/nano-CaCO3)复合材料。通过力学性能测试、偏光显微镜、差示扫描量热仪、熔体流动速率仪和扫描电子显微镜,考察了nano-CaCO3的用量对POM/TPU(90/10)复合材料力学性能的影响,并探讨了共混方式对复合材料力学性能及微观结构形态的影响。结果表明,4 %的nano-CaCO3与TPU预先混合制成母粒再与POM共混得到的复合材料中POM晶粒发生明显细化,缺口冲击强度高达12.5 kJ/m2,冲击性能较为优异。  相似文献   

10.
含异氰酸酯基的低聚物和聚醚增容改性POM/TPU共混物   总被引:2,自引:0,他引:2       下载免费PDF全文
刘春林  周如东  吴盾  陈玲红 《化工学报》2008,59(9):2377-2383
利用双螺杆挤出机制备了聚甲醛(POM)/热塑性聚氨酯弹性体(TPU)、POM/TPU/含异氰酸酯基的低聚物(Z)以及POM/TPU/Z/聚醚3种共混物。采用力学性能测试、差示扫描量热分析(DSC)、偏光显微镜(PLM)、傅里叶转换红外线光谱 (FTIR)、扫描电子显微镜(SEM)、动态力学性能分析(DMA)等,研究了3种共混物的力学性能、结晶行为及形态结构。结果表明:共混物的缺口冲击强度和断裂伸长率随TPU含量的增加而提高;异氰酸酯基低聚物(Z)和聚醚在促进分散相分散、增强两相间的相容性方面发挥重要作用,降低了聚甲醛的结晶度,能够有效地提高共混物的缺口冲击强度和断裂伸长率。  相似文献   

11.
The length of multi-walled carbon nanotubes (MWCNT) has an important influence on the properties of polymer/MWCNT composites. This study aims to examine the influence of the length of MWCNT on the mechanical properties, distribution, melting and crystallization behavior, and electromagnetic interference shielding effectiveness (EMI SE) of PP/MWCNT composites. The test results show that MWCNT of a short length contribute to better mechanical properties and have a better dispersion in the matrix. MWCNT also serve as a nucleating agent for PP, thereby increasing the crystallization temperature (Tc). In particular, short MWCNT provide PP/MWCNT composites with a greater degree of cyrstallinity. The conjunction of 8 wt% long MWCNT in PP/MWCNT composites results in an optimal electrical resistivity of 65.02 Ω-cm, and an average EMI SE of ?29.47 dB. The polymer/MWCNT composites have properties that can be adjusted by using different lengths of MWCNT, which is advantageous for application in diverse products.  相似文献   

12.
以乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯三元共聚物(PTW)为相容剂,采用平行同向双螺杆挤出机共混挤出制备了无碱玻璃纤维(GF)增强热塑性聚氨酯弹性体(TPU)复合材料。研究了PTW对GF增强聚酯型TPU和聚醚型TPU复合材料力学性能的影响及其微观形貌特征。结果表明:PTW是GF和TPU的有效相容剂;添加6%PTW的增强TPU复合材料的各项性能较佳;GF含量在20%40%之间时增强效果最为明显;PTW与聚酯型TPU的相容性好于聚醚型TPU;电镜照片显示,复合材料中的GF与基体树脂具有较强的界面作用。  相似文献   

13.
Highly efficient electrical conductive networks were constructed in carbon‐black (CB)‐filled polyoxymethylene (POM)–thermoplastic polyurethane (TPU)–polyamide 6 (PA6) ternary blends through the formation of a hierarchical structure composed of a minor PA6 phase as droplets inside one major phase (TPU) and CB particles localized at the TPU–PA6 interface by thermodynamically induced self‐assembly. The hierarchical structure was thermodynamically predicted on the basis of the minimization of total interfacial energies and confirmed by electron microscopy. The degrees of the TPU phase continuity before and after the addition of PA6 were determined by solvent‐extraction experiments. The percolation threshold of CB decreased by 50% compared to that in the POM–TPU binary blend because of the more efficient formation of a CB conductive network through CB‐covered PA6 domains inside the TPU phase. The hierarchical structure not only increased the electrical conductivity of the composites but also improved their thermal stability in comparison with the simple structure formed by the homogeneously dispersed CB particles in POM. The method reported in this article can offer possibilities for improving the comprehensive properties of the conductive composites and the widening of their applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45877.  相似文献   

14.
通过熔融挤出的方法,制备了聚丙烯/玻璃纤维/导电炭黑复合材料,并系统研究了不同玻璃纤维和导电炭黑含量对复合材料导电性能、力学性能、收缩率及结晶行为的影响。结果表明,玻璃纤维的加入能促进炭黑形成导电网络,有效降低逾渗阈值;玻璃纤维具有明显的增刚和降低收缩率的作用;且玻璃纤维和炭黑的加入均降低了聚丙烯的结晶能力。  相似文献   

15.
Cellulose acetate (CA)‐based nanocomposites with various contents of neat multiwalled carbon nanotube (MWCNT) or acid‐treated one (MWCNT‐COOH) are prepared via melt‐compounding method and investigated their morphology, thermal stability, mechanical, and electrical properties. SEM microphotographs reveal that MWCNT‐COOHs are dispersed uniformly in the CA matrix, compared with neat MWCNTs. FTIR spectra support that there exists a specific interaction between carboxyl groups of MWCNT‐COOHs and ester groups of CA, indicating good interfacial adhesion between MWCNT‐COOHs and CA matrix. Accordingly, thermal stability and dynamic mechanical properties of CA/MWCNT‐COOH nanocomposites were higher than those of CA/MWCNT composites. On the contrary, electrical volume resistivities of CA/MWCNT‐COOH nanocomposites are found to be somewhat higher than those of CA/MWCNT composites, which is because of the deterioration of graphene structures for MWCNT‐COOHs and the good dispersion of MWCNT‐COOHs in the CA matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Multiwalled carbon nanotubes (MWCNTs) were synthesized using chemical vapor deposition and poly(trimethylene terephthalate) (PTT)/MWCNT composites with varying amounts of MWCNTs were prepared by melt compounding using DSM micro‐compounder. Morphological characterization by SEM and TEM showed uniform dispersion of MWCNTs in PTT matrix upto 2% (w/w) MWCNT loading. Incorporation of MWCNTs showed no effect on percent crystallinity but affected the crystallite dimensions and increased the crystallization temperature. Dynamic mechanical characterization of composites showed an increase in storage modulus of PTT upon incorporation of MWCNTs above glass transition temperature. The electrical conductivity of PTT/MWCNT composites increased upon incorporation of MWCNTs and percolation threshold concentration was obtained at a loading of MWCNTs in the range of 1–1.5% (w/w). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Novel compatibilized polyoxymethylene/thermoplastic polyurethane (POM/TPU) blends are successfully developed using multifunctional chain extender, Joncryl ADR‐4368, as the compatibilizer. The outstanding compatibilization efficiency of Joncryl on POM/TPU blend was demonstrated by its even higher mechanical properties with only 0.5 wt % of Joncryl than those with 5 wt % of three commonly used compatibilizers. Addition of only 0.5 wt % Joncryl can double the impact strength and significantly improve its tensile strength and flexural strength for POM/TPU (75/25) blend. SEM images show that Joncryl can reduce TPU particle size and enhance the interfacial interactions between POM and TPU. The interparticle distance of TPU in POM/TPU/Joncryl blends was calculated as 0.2 μm, quite close to the critical matrix ligament thickness of POM/TPU blends (0.18 μm). The impact force profile vividly shows that the addition of Joncyl in POM/TPU blends can dramatically increase the total impact energy absorbed by this blend system and enhance the interfacial interactions between POM and TPU. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The microstructure, rheological and conductive properties of multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) composites were investigated by positron annihilation lifetime spectroscopy, positron annihilation coincidence Doppler broadening (CDB), oscillatory rheometry and electrical resistivity for different MWCNT contents. A 10 orders of magnitude increase in electrical conductivity was achieved with very small quantities of MWCNTs. CDB was used to determine a percolation threshold value, which was in good agreement with the electrical conductivity and rheological measurements. The results showed that with increasing MWCNT content, the composites underwent a phase transition from insulating to conducting at room temperature, which was attributed to the formation of a MWCNT network. The effect of MMCNTs on the microstructure of MWCNT/PC composites has been studied by positron annihilation lifetime measurements. The results showed that the fractional free volume decreased because of the MWCNTs and the formation of conductive network. The effects of MWCNT filler on the atomic scale free volume and mechanical property of MWCNT/PC composites were also discussed.  相似文献   

19.
We investigated the mechanical and physical characteristics of composites composed of polyacetal [alternatively called polyoxymethylene (POM)] and cellulose fiber (CelF) derived from wood pulp [10–52 wt % (9.3–50.1 vol %)] without any fiber surface treatment. The modulus, deflection temperature under load, and thermal conduction coefficient of the POM/CelF composites were effectively enhanced with increasing CelF content, and the composites had an advantage of specific modulus compared to glass fiber (GF)‐filled POM. The flexural modulus of POM/CelF 40 wt % (38.2 vol %) was measured to be about 6 GPa, which was comparable to that of POM/GF 20 wt % (12.1 vol %). In the composites, the CelFs were distributed randomly as monofilaments, and the debonding of the interface between the fibers and POM matrices in the fracture faces was confirmed as less by scanning electron microscopy observation. The POM/CelF composites possessed lower specific wear rates than the POM/GF composites, and they had damping behaviors near that of neat POM. No clear dependence of the melt flow index of the base POM on these characteristics was observed, except on Charpy impact strength. The composites studied here were unique in their performance and ability to be designed in accordance with specific demands, and they could be potential replacements for mineral‐filled and GF‐filled POM composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends were prepared via a melt‐blending process with or without the addition of a 3‐aminopropyl triethoxysilane (APTES) compatibilizer at different dosages. The addition of the compatibilizer showed improved compatibility between TPU and PLA; this led to an enhanced dispersion of TPU within the PLA matrix. With the addition of 1‐phr APTES, the crystallization behavior did not vary much, but this exacerbated the formation of a second melting temperature for PLA at higher temperature. However, the addition of 5‐phr APTES into the PLA/TPU blends depressed the crystallization temperature and resulted in a melting temperature depression phenomena with the disappearance of the second melting peak because of the lubricated effect of low‐molecular‐weight species of APTES. The addition of a low dosage of APTES improved the impact strength further from 29.2 ± 1.4 to 40.7 ± 2.7 J/m but with a limited improvement in the tensile properties; this indicated that a higher dispersion of the dispersed phase did not always improve all of the mechanical properties because of the low‐molecular‐weight nature of the compatibilizer used. The physical properties of the added modifier needed to be considered as well. A low dosage of APTES (1 phr) also increased the viscosity because of the improved interaction between TPU and PLA at all of the investigated shear rate regions, but a higher dosage of compatibilizer induced another plasticizing effect to reduce the viscosity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42322.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号