首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Storage‐stable styrene‐butadiene‐styrene triblock copolymer (SBS)‐modified asphalt was prepared by dynamic vulcanization. The vulcanization characteristics of the asphalt/SBS/sulfur blend were studied using a strain‐controlled rheometer. The vulcanization of SBS in the asphalt resulted in a marked increase in the torque of the blend. In addition, the vulcanization of a butadiene rubber (BR)/sulfur blend was significantly influenced by the addition of asphalt through a curemeter. The existence of asphalt can accelerate the vulcanization of BR/sulfur blend and reduce its reversion. The preparation process of storage‐stable SBS‐modified asphalt by dynamic vulcanization was identified by a plot of the electric current versus time. The addition of sulfur to the SBS‐modified asphalts resulted in the formation of chemically vulcanized network structures in the modified binders. The physical properties of the SBS‐modified asphalt containing sulfur were compared to those of the modified binders without sulfur. The storage stability of the SBS‐modified asphalt was effectively improved by the addition of sulfur. The rheological properties of the SBS‐modified asphalts before and after adding sulfur were characterized by using dynamic shear rheometry and a rotational viscometer. As indicated by the monitored morphology, the compatibility and high‐temperature storage stability of SBS‐modified asphalts were improved by the addition of sulfur.  相似文献   

2.
End amino, carboxylic acid, and hydroxyl functionalized styrene–butadiene–styrene (SBS) triblock copolymers were prepared with 1,5‐diazabicyclo[3.1.0]hexane, carbon dioxide, and epoxy ethane as capping agents, respectively. The effects of the end polar groups on the morphology and dynamic mechanical properties were investigated. Transmission electron microscopy images suggested that the group at the end of the polystyrene (PS) segment made the morphology of the PS domains disordered and incompact. Dynamic mechanical results showed that the storage and loss modulus increased after SBS was end‐functionalized. End amino and carboxylic acid groups improved the compatibility and storage stability of SBS‐modified asphalt. However, the effect of the end‐hydroxyl group on the improvement of the storage stability of SBS‐modified asphalt was not obvious. The differential scanning calorimetry analysis of SBS‐modified asphalt further showed that the compatibility and storage stability of SBS‐modified asphalt were improved by the attachment of amino or carboxylic acid groups through the anionic polymerization method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 8–16, 2007  相似文献   

3.
The purpose of this study was to characterize the mechanical behavior of asphalt modified by styrene–butadiene–styrene (SBS) and sulfur. Viscosity, microscopy, and rheological tests were conducted to understand the engineering properties of the polymer‐modified asphalt (PMA). Without the addition of sulfur, the polymer‐modified asphalt was microheterogeneous and was made up of two distinct finely interlocked phases, especially at high SBS concentrations. After the addition of sulfur, the PMA was observed to have smaller asphalt domains and a fairly homogeneous dispersion of the asphalt in the SBS matrix. The compatibility between polymer and asphalt produced an elastic network into the asphalt. The addition of sulfur resulted in an excellent elastic system and substantially increased the rheological properties of the PMA. Because of the colloidal nature of asphalt cements, their engineering properties were greatly improved because of the reinforcement of the SBS polymer and the physical‐chemical interaction between SBS and asphalt. The difference in the softening point between the top and bottom layers decreased significantly, and elastic recovery increased when was sulfur was present. A viscoelastic model was examined and shown to be appropriate for predicting the rheological properties ofthe asphalt–SBS blend mixed with sulfur. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2817–2825, 2007  相似文献   

4.
In this study, waste crumb rubber and sulfur were utilized to enhance the performance of asphalt binder for pavement applications. About 20–50% of sulfur and 1–6% crumb rubber were used. Melt properties were investigated using thermal analysis, dynamic and steady shear rheology, and artificial aging. Rheological tests were carried out in ARES rheometer. Both steady and dynamic shear rheology showed that crumb rubber improved the viscoelastic properties of the sulfur‐extended asphalt binder. Crumb rubber modification reduced temperature susceptibility of sulfur/asphalt, and increased the upper grading (performance) temperature of sulfur asphalt. The combined effect of sulfur and crumb rubber reduced the activation energy compared with that of pure asphalt. Zero‐shear viscosity and strategic highway research program rutting parameter (G*/sinδ) improved by crumb rubber incorporation into the sulfur asphalt binder. Short‐term aging improved G*/sinδ with slight increase in activation energy. The addition of sulfur to asphalt matrix increased the viscoelastic properties (G′ and G″) of sulfur asphalt. The addition of crumb rubber to sulfur asphalt enhanced the temperature resistance of the binder. Utilization of waste crumb rubber and sulfur in asphalt modification proved to enhance asphalt pavement life. In addition, utilization of such wastes can help in meeting the extra demand for asphalt, reduce the pavement cost, and help in solving a waste disposal problem. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40046.  相似文献   

5.
Clay/styrene–butadiene–styrene (SBS) modified bitumen composites were prepared by melt blending with different contents of sodium montmorillonite (Na‐MMT) and organophilic montmorillonite (OMMT). The structures of clay/SBS modified bitumen composites were characterized by XRD. The XRD results showed that Na‐MMT/SBS modified bitumen composites may form an intercalated structure, whereas the OMMT/SBS modified bitumen composites may form an exfoliated structure. Effects of MMT on physical properties, dynamic rheological behaviors, and aging properties of SBS modified bitumen were investigated. The addition of Na‐MMT and OMMT increases both the softening point and viscosity of SBS modified bitumens and the clay/SBS modified bitumens exhibited higher complex modulus, lower phase angle. The high‐temperature storage stability can also be improved by clay with a proper amount added. Furthermore, clay/SBS modified bitumen composites showed better resistance to aging than SBS modified bitumen, which was ascribed to barrier of the intercalated or exfoliated structure to oxygen, reducing efficiently the oxidation of bitumen, and the degradation of SBS. POLYM. ENG. SCI., 47:1289–1295, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
《Polymer Composites》2017,38(5):936-946
High viscosity modified (HVM) asphalt was prepared by the addition of styrene–butadiene–styrene (SBS), plasticizer, crosslinker. The effect and proportion of each modifier in the preparation of HVM asphalt were studied. SBS was the major modifier and determined the basic properties of HVM asphalt. Plasticizer (furfural exact oil) and crosslinker (sulfur) as additional modifiers were necessary in improving the workability, stability, and aging resistance of modifier. The effect of aging and additional modifiers on the structure and rheological behavior of SBS modified (SM) asphalt was displayed by adopting various rheological tests. Plasticizer declined the rutting resistance of SM asphalt and increased the viscous behavior of SM asphalt after aging. The use of crosslinker led to the formation of polymer network and improved the aging resistance of SM asphalt. The morphology observation shows crosslinker led to the formation of polymer network and improved the compatibility between SBS and asphalt. Plasticizer prompted the swelling and dispersion of SBS in asphalt and improved the effect of crosslinker further. Aging destroyed the polymer phase seriously and there was still residual polymer phase in asphalt. POLYM. COMPOS., 38:936–946, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
High‐elastic modified (HEM) asphalt was prepared by the addition of styrene‐butadiene‐styrene (SBS), plasticizer, and crosslinker to base asphalt. The effect and proportion of each modifier in asphalt were studied using physical and rheological tests. It was found that SBS determined the high‐temperature performance of HEM asphalt mainly. Plasticizer (dioctyl phthalate) is very helpful in improving the low‐temperature flexibility and elastic recovery. Crosslinker (sulfur) is necessary in maintaining high‐temperature stability. In this study, Fourier transform infrared, hydrogen nuclear magnetic resonance analysis, and microscopy observation were used to investigate the structural characteristics of modified asphalts further before and after ageing. The research showed the structural characteristics of modified asphalt were influenced evidently by ageing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42132.  相似文献   

8.
We investigated the thermooxidative aging mechanism of crumb‐rubber‐modified asphalts (CRMAs) by tracing the evolution of the chemical structure and physical properties of CRMA during aging. The chemical structural evolution of crumb rubber (CR) in various aged CRMAs was characterized by measurement of the crosslink structure and composition of extracted CR. The residual asphalt of the aged CRMA was investigated by IR spectroscopy. The physical properties of CRMA were characterized by conventional testing before and after aging. We found that the change in the physical properties of CRMA correlated well with both the evolution of the rubber network and the oxidation of asphalt. The thermooxidative aging resistance of CRMA was improved with increasing CR dosage; this further illustrated that aging promoted the dissolution of CR into asphalt. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43323.  相似文献   

9.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

10.
The aim of this research is to evaluate the effect of polyphosphoric acid (PPA) on the mechanical performance of styrene–butadiene–styrene (SBS) and styrene–butadiene–rubber (SBR) modified asphalt. Conventional properties, multiple stress creep recovery (MSCR), bending beam rheometer (BBR), and linear amplitude sweep (LAS) tests were conducted to evaluate the performance characteristics of asphalt at different PPA inclusions. Gel-permeation chromatography (GPC), saturates, aromatics, resins, and asphaltenes (SARA), and Fourier transform infrared (FTIR) were carried to reveal the molecular weight, component and infrared spectra of asphalt. Results showed that PPA hardened the asphalt, improved the rutting and fatigue performances of polymer modified asphalt (PMA) binder, but weakened the anti-cracking performances. Besides, storage stability had a significant improvement as the addition of PPA. The addition of PPA brought more macromolecules into asphalt and led to more high-average molecular weight compounds. Furthermore, PPA changed four component ratios of asphalt. Both PMA with or without PPA have similar absorption peaks. This may be due to absorption peak of PMA covered the changes in PPA modification process as the low content of PPA. 0.8% dosage of PPA may be considered optimum for composite modified binder combining the above experimental results for this binder source.  相似文献   

11.
将3种不同的温拌剂添加到苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)/橡胶粉复合改性沥青中,并拌和相应的应力吸收层混合料成型后制得复合式试件,通过黏度试验评价了不同温拌剂对SBS/橡胶粉复合改性沥青降黏效果的影响,通过层间拉拔试验、剪切试验和剪切疲劳试验分析了温拌SBS/橡胶粉复合改性沥青混合料应力吸收层层间性能的变化特性。结果表明,温拌剂的降黏效果由优到劣的顺序依次为:Evotherm-3 G、Sasobit-LM、Aspha-min,温拌沥青技术并不影响常温环境下复合改性沥青应力吸收层层间的黏结性能和抗剪性能;高温及水浴环境会导致不同应力吸收层层间力学强度明显降低,且不同温拌剂复合改性沥青应力吸收层的层间拉拔强度和抗剪强度存在差异,其中温拌剂Evotherm-3 G和Sasobit-LM能够增强应力吸收层层间的力学强度;相对于SBS/橡胶粉复合改性沥青的应力吸收层,添加温拌剂会缩短应力吸收层混合料的层间剪切疲劳寿命,Sasobit、Aspha-min和Evotherm-3 G温拌复合改性沥青应力吸收层的层间剪切疲劳寿命分别缩短了约10.0%、17.4%和2.7%。  相似文献   

12.
通过测试软化点、针入度和延度对SBS改性沥青的性能进行表征.结果表明:使用线型或星型SBS作为沥青改性剂可以显著提高沥青性能.当硫黄稳定剂质量分数为0.2%,SBS质量分数为4%时,改性沥青的软化点、针入度和延度趋于稳定.此外,相较于线型SBS改性,星型SBS改性沥青的软化点稍高,针入度和延度相对更小.  相似文献   

13.
The modification of asphalt with styrene‐ butadiene block copolymers and sulfur was studied to elucidate the effect of the molecular characteristics of the polymer, polymer content, and sulfur/polymer ratio on the physical properties of modified asphalts. Two types of styrene‐butadiene copolymers were used (SB and SBS), which differed considerably in terms of their chain architecture, average molecular weights, and size and distribution of their polybutadiene and polystyrene blocks, as shown by gel permeation chromatography, infrared spectroscopy, nuclear magnetic resonance, and differential scanning calorimetry. Sulfur/polymer/asphalt blends were prepared by a hot mixing process and characterized by conventional tests, fluorescence microscopy, and rheology. The results revealed that the morphology of the blends is strongly dependent on polymer concentration and sulfur/polymer ratio. In‐depth rheological characterization showed that the thermomechanical properties changed considerably upon addition of small amounts of sulfur. Collectively, these results suggest that sulfur increases the compatibility between polymer and asphalt by crosslinking polymer chains. Interestingly, the rheological behavior of blends prepared with a combination of SB and sulfur was similar to that exhibited by blends prepared with SBS either in the presence or absence of sulfur. This is explained by assuming that the addition of small amounts of sulfur to SB‐modified asphalt facilitates the formation of an elastomeric network that resembles the one found in SBS‐modified asphalt, effectively contributing to asphalt reinforcement. Nonetheless, the exact dosage of sulfur must be carefully controlled to prevent gel formation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
杨德胜  郭豪 《硅酸盐通报》2021,40(9):3168-3176
为了制备储存稳定性良好的橡胶改性沥青,基于高温混炼工艺,使用聚苯乙烯-聚丁二烯-聚苯乙烯嵌段聚合物(SBS)、芳烃油、辛烯聚合物橡胶反应剂(TOR)、稳定剂与橡胶粉对基质沥青进行复合改性。提出了橡胶改性沥青的制备方法,分析了改性剂对沥青常规性能和流变特性的影响,并通过荧光试验观察改性剂在沥青中的分散效果。研究结果表明:添加质量分数为25%的40目(380 μm)胶粉可以明显提高沥青的高温性能;180 ℃下剪切60~90 min后溶胀发育60 min可以得到稳定性良好的橡胶改性沥青;加入相容剂和稳定剂可以提高胶粉的溶胀与分散程度,改性剂之间对沥青性能的影响存在协同作用;复合改性沥青具有良好的弹性恢复能力和高温抗变形性能;橡胶粉、SBS在沥青中的溶胀程度和分散均匀性是影响沥青常规性能和储存稳定性的直接因素。  相似文献   

15.
Crumb rubber (CR) and ethylene vinyl acetate copolymer (EVA) were adopted as asphalt modifiers. Routine tests, softening point, penetration, and ductility were used to evaluate the basic properties of crumb rubber and ethylene vinyl acetate copolymers (CR/EVA) modified asphalt. The segregation experiment measured the storage stability. Modern test methods such as fluorescence microscopic photography technology was used to study stability of polymer modified asphalt. Infrared spectrum experiment was used to analyze the composition differences of the upper part and lower part of CR/EVA modified asphalt. Matlab software was employed to fit out the formulae of ductility, penetration, and softening point difference of modified asphalt and shearing temperature, shearing time and shearing rate separately. Compared with base asphalt, the properties of CR/EVA modified asphalt have been greatly improved. The formulae which were fitted out by Matlab software showed that the shearing time was the foremost factor affecting the properties of CR/EVA modified asphalt, followed by shearing temperature, and the last was shearing rate. The conclusions which were fitted by orthogonal experiment were basically consistent with the results of formulae which were fitted out by Matlab software. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43598.  相似文献   

16.
考察了废胶粉掺加量、工艺条件以及基质沥青产地对沥青高温性能和储存稳定性的影响。又进一步研究了添加剂维他连接剂TOR、多聚磷酸PPA对上述性能的影响。结果表明,胶粉掺加量为沥青质量的15%~20%,溶胀时间2~3 h,剪切时间1.5 h,剪切温度186~189℃,剪切速率7 000~8 000 r/min可显著提高胶粉改性沥青的高温性能和储存稳定性。添加剂可不同程度改善胶粉改性沥青的高温性能和储存稳定性,且基质沥青产地对胶粉改性沥青性能有决定性的影响。  相似文献   

17.
介绍了废旧胶粉改性沥青的机理,分析了影响废旧胶粉改性沥青高温贮存稳定性的因素,从配方、工艺等方面综述了目前国内外提高废旧胶粉改性沥青高温贮存稳定性的方法,展望了废旧胶粉改性沥青贮存稳定性的发展前景,认为提高高温贮存稳定性是废旧胶粉改性沥青工厂化集中生产和稳定化应用的前提.  相似文献   

18.
The porous asphalt pavements is often used in important occasion for its special properties and performance which can be to a great extent attributed to the binder—high viscosity and elasticity asphalt (HVEA). To prepare high demanding binder for porous asphalt pavements, the polyurethane prepolymer (PUP) and styrene–butadiene–styrene (SBS) were used to modify the matrix asphalt compositely. First, based on a series of physical tests, the effects of binder composition on performance of SBS/PUP HVEA binder (SBS/PUP-HVEA) were investigated. Then the Fourier transform infrared (FTIR) test was conducted to investigate the reaction mechanism of SBS/PUP-HVEA binder. Last, the fluorescence microscopy, stability tests, multiple stress creep recovery test, and differential scanning calorimetry test were carried out to evaluate and compare the phase structure, storage, high-temperature performance, thermostability characteristics of several HVEA binders. It is found that the composite modification of SBS and PUP can produce high quality binder which possesses high viscosity and high elasticity. And the composition of SBS/PUP-HVEA were recommended as follows: Shell-70# can be chosen as matrix asphalt, the contents of SBS modifier (SBS1301:SBS4303 = 1:2), H2122A PUP, chain extender M-OEA, and crosslinker sulfur were suggested 4%, 5%, 0.5%, and 1‰, respectively. The new functional groups observed in FTIR confirmed the existence of physical and chemical reactions in the modification process, which were beneficial to improve the high temperature performance and storage stability of the binder. SBS/PUP-HVEA had good phase structure, storage stability, high temperature performance, and thermostability compared to other HVEA binders. This study demonstrated that the SBS/PUP compositely modified asphalt possessed high viscosity and high elasticity, which can be used in the porous asphalt mixture and other highly demanding working environment as well.  相似文献   

19.
Polymer‐modified asphalts (PMAs) were prepared using Bachaquero asphalt and styrene–butadiene–styrene (SBS) type copolymers. Their rheological behavior was compared to that of unmodified asphalt and of a compatible commercial PMA. Materials were submitted to frequency sweeps between 10?1 and 102 rad/s from 0 to 50°C. Storage stability tests were performed for 72 h at 160°C. Ring and ball softening points from the top and the bottom of the blends were compared and were used along with fluorescence microscopy to evaluate stability. Samples prepared with styrene–ethylene–butylene–styrene (SEBS) showed improved compatibility and stability as compared with SBS‐modified asphalts, probably because of a higher stability to thermal degradation from the absence of double bonds. An additional improvement in stability and compatibility was observed for SEBS functionalized with maleic anhydride (SEBS‐g‐MAH)–modified blends. Better compatibility, however, did not improve rheological behavior at low temperatures. The systems studied are so complex from a chemical point of view that the rheological criteria normally used to predict compatibility of polyblends did not give enough information regarding the compatibility of the modified asphalts. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1772–1782, 2003  相似文献   

20.
以苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、废旧轮胎橡胶粉和石油树脂制备复合改性沥青,并对复合改性沥青的储存稳定性、温度敏感性、高温流变性能、抗车辙性能和黏度等进行了考察。结果表明,复合改性沥青中,SBS、废旧轮胎橡胶粉及石油树脂的最佳质量分数分别为4.5%、14.0%和4.5%;石油树脂/SBS/废旧轮胎橡胶粉复合改性沥青具有较好的储存稳定性、温度敏感性和抗车辙性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号