首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copolymers of poly(acrylonitrile‐co‐ethyl methacrylate), P(AN‐EMA), with three different EMA content and parent homopolymers were synthesized by emulsion polymerization. The chemical composition of copolymers were identified by FTIR, 1H‐NMR and 13C‐NMR spectroscopy. The thermal properties of copolymers were modified by changing the EMA content in copolymer compositions. Various amounts of LiClO4 salt loaded (PAN‐co‐PEMA) copolymer films were prepared by solution casting. The dielectric properties of these films at different temperatures and frequencies were investigated. It was found that the dielectric constant and ac‐conductivity of copolymer films were strongly influenced by the salt amounts and EMA content in copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The transparent and flexible solid polymer electrolytes (SPEs) were fabricated from polyacrylonitrile‐polyethylene oxide (PAN‐PEO) copolymer which was synthesized by methacrylate‐headed PEO macromonomer and acrylonitrile. The formation of copolymer is confirmed by Fourier‐transform infrared spectroscopy (FTIR) measurements. The ionic conductivity was measured by alternating current (AC) impedance spectroscopy. Ionic conductivity of PAN‐PEO‐LiClO4 complexes was investigated with various salt concentration, temperatures and molecular weight of PEO (Mn). And the maximum ionic conductivity at room temperature was measured to be 3.54 × 10?4 S/cm with an [Li+]/[EO] mole ratio of about 0.1. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 461–464, 2006  相似文献   

3.
The UV‐vis absorption, thermal analysis, ionic conductivity, mechanical properties, and morphology of a blend of poly(dimethylsiloxane‐co‐ethylene oxide) [P(DMS‐co‐EO)] and poly(epichlorohydrin‐co‐ethylene oxide) [P(EPI‐co‐EO)] (P(DMS‐co‐EO)/P(EPI‐co‐EO) ratio of 15/85 wt %) with different concentrations of LiClO4 were studied. The maximum ionic conductivity (σ = 1.2 × 10?4 S cm?1) for the blend was obtained in the presence of 6% wt LiClO4. The crystalline phase of the blend disappeared with increasing salt concentration, whereas the glass transition temperature (Tg) progressively increased. UV‐vis absorption spectra for the blends with LiClO4 showed a transparent polymer electrolyte in the visible region. The addition of lithium salt decreased the tensile strength and elongation at break and increased Young's modulus of the blends. Scanning electron microscopy showed separation of the phases between P(DMS‐co‐EO) and P(EPI‐co‐EO), and the presence of LiClO4 made the blends more susceptible to cracking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1230–1235, 2004  相似文献   

4.
A new conducting copolymer, polyacrylonitrile‐graft‐polyaniline (PAN‐g‐PANi), has been prepared by chemical and electrochemical methods from a precursor polymer. Poly[acrylonitrile‐co‐(acrylimine phenylenediamine)] (PAN‐co‐PAIPD) was synthesized chemically by reacting PAN with sodium 1,4‐phenylenediamine salt. PAN‐g‐PANi was synthesized chemically using ammonium peroxydisulfate as the oxidant and p‐toluenesulfonic acid in dimethylsulfoxide solution and adding aniline to oxidized PAN‐co‐PAIPD. Electrochemical polymerization was carried out by spin coating PAN‐co‐PAIPD on the surface of a Pt electrode, then the growth of the graft copolymer (PAN‐g‐PANi) in the presence of fresh aniline and acidic solution. The structures of the graft copolymer and PAN‐co‐PAIPD were characterized using UV‐visible, Fourier transform infrared, and 1H and 13C NMR spectroscopies. The thermal properties of PAN‐g‐PANi were studied using thermogravimetric analysis and differential scanning calorimetry. Scanning electron microscopy (SEM) images showed that the morphology of PAN‐g‐PANi copolymer films was homogeneous. Electrical conductivity of the copolymer was studied using the four‐probe method, which gave a conductivity of 4.5 × 10?3 S cm?1 with 51.4% PANi. SEM and electrical conductivity measurements supported the formation of the graft copolymer. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
A new and promising method for the diversification of microbial polyesters based on chemical modifications is introduced. Poly(3‐hydroxy alkanoate)‐g‐(poly(tetrahydrofuran)‐b‐poly(methyl methacrylate)) (PHA‐g‐(PTHF‐b‐PMMA)) multigraft copolymers were synthesized by the combination of cationic and free radical polymerization. PHA‐g‐PTHF graft copolymer was obtained by the cationic polymerization of THF initiated by the carbonium cations generated from the chlorinated PHAs, poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBHx) in the presence of AgSbF6. Therefore, PHA‐g‐PTHF graft copolymers with hydroxyl ends were produced. In the presence of Ce+4 salt, these hydroxyl ends of the graft copolymer can initiate the redox polymerization of MMA to obtain PHA‐g‐(PTHF‐b‐PMMA) multigraft copolymer. Polymers obtained were purified by fractional precipitation. In this manner, their γ‐values (volume ratio of nonsolvent to the solvent) were also determined. Their molecular weights were determined by GPC technique. The structures were elucidated using 1H‐NMR and FTIR spectroscopy. Thermal analyses of the products were carried out using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Novel polyacrylonitrile (PAN)‐co‐poly(hydroxyethyl acrylate) (PHEA) copolymers at three different compositions (8, 12, and 16 mol % PHEA) and their homopolymers were synthesized systematically by emulsion polymerization. Their chemical structures and compositions were elucidated by Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy. Intrinsic viscosity measurements revealed that the molecular weights of the copolymers were quite enough to form ductile films. The influence of the molar fraction of hydroxyethyl acrylate on the glass‐transition temperature (Tg) and mechanical properties was demonstrated by differential scanning calorimetry and tensile test results, respectively. Additionally, thermogravimetric analysis of copolymers was performed to investigate the degradation mechanism. The swelling behaviors and densities of the free‐standing copolymer films were also evaluated. This study showed that one can tailor the hydrogel properties, mechanical properties, and Tg's of copolymers by changing the monomer feed ratios. On the basis of our findings, PAN‐co‐PHEA copolymer films could be useful for various biomaterial applications requiring good mechanical properties, such as ophthalmic and tissue engineering and also drug and hormone delivery. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Polyacrylonitrile (PAN)‐grafted sodium salt of partially carboxymethylated tamarind kernel powder (Na‐PCMTKP‐g‐PAN, %G = 413.76 and %GE = 96.48) was prepared using the established optimal reaction conditions for ceric‐initiated graft copolymerization of acrylonitrile onto Na‐PCMTKP (DS = 0.15) in a homogeneous medium. The graft copolymer was hydrolyzed by 0.7N KOH solution at 90–95°C to yield the superabsorbent hydrogel H‐Na‐PCMTKP‐g‐PAN. The nitrile groups of Na‐PCMTKP‐g‐PAN were completely converted into a mixture of hydrophilic carboxamide and carboxylate groups during alkaline hydrolysis, followed by in situ crosslinking of the grafted PAN chains. The products were characterized spectroscopically and morphologically. The swelling behavior of the unreported superabsorbent hydrogel, H‐Na‐PCMTKP‐g‐PAN, was studied by carrying out its absorbency measurements in low‐conductivity water, 0.15M salt (NaCl, CaCl2, and AlCl3) solutions, and simulated urine (SU) at different timings. The swelling behavior of the hydrogel in different swelling media followed the second‐order kinetics. The values of the various swelling characteristics were reported. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
A blend of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (PSAN) has been evaluated as a composite polymer electrolyte by means of differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, ac impedance measurements, and linear sweep voltammetry (LSV). The blends show an interaction with the Li+ ions when complexed with lithium perchlorate (LiClO4), which results in an increase in the glass‐transition temperature (Tg) of the blends. The purpose of using PSAN as another component of the blend is to improve the poor mechanical properties of PMMA‐based plasticized electrolytes. The mechanical property is further improved by introducing fumed silica as inert filler, and hence the liquid electrolyte uptake and ionic conductivity of the composite systems are increased. Room‐temperature conductivity of the order of 10?4 S/cm has been achieved for one of the composite electrolytes made from a 1/1 blend of PSAN and PMMA containing 120% liquid electrolyte [1M LiClO4/propylene carbonate (PC)] and 10% fumed silica. These systems also showed good compatibility with Li electrodes and sufficient electrochemical stability for safe operation in Li batteries. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1319–1328, 2001  相似文献   

9.
The copolymerization of pyrrole (Py) with N‐ethyl pyrrole, N‐butyl pyrrole, and N‐octyl pyrrole (NOPy) was carried out by electrochemical and chemical oxidation. In the electrochemical method, copolymer thin films with different feed ratios of monomers were synthesized by the cyclic voltammetry method in a lithium perchlorate (LiClO4)/acetonitrile (CH3CN) electrolyte on the surface of a glassy carbon working electrode. The deposition conditions on the glassy carbon, the influence of the molar ratios of the monomers on the formation of the copolymers, and the electroactivity of the copolymers were investigated with cyclic voltammetry. Nanoparticles made of a conjugate of the copolymers with different feed ratios of monomers were prepared by chemical polymerization (conventional and interfacial methods) in the presence of iron(III) chloride hexahydrate (FeCl3·6H2O) as the oxidant. Nanostructural copolymers with higher conductivities were synthesized by simple tuning of the preparation conditions in a two‐phase medium. Fourier transform infrared spectroscopy, scanning electron microscopy, and four‐probe conductivity measurement techniques were applied for the characterization of the obtained copolymers. The conductivity of the obtained copolymer by an interfacial method with chloroform as the organic phase was 20 times higher than the copolymer obtained via an interfacial method with toluene as the organic phase and 700 times higher than the copolymer prepared by the conventional method (for a molar ratio of 70 : 30 Py : NOPy). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

11.
The behavior of lithium ions in a comb-like polymer electrolyte with a chelating functional group have been characterized by differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR) spectroscopy, ac impedance and 7Li solid-state NMR measurements. The comb-like copolymer is synthesized by poly(ethylene glycol-methyl ether methacrylate) (PEGMEM) and (2-methylacrylic acid 3-(bis-carboxymethylamino) -2-hydroxy-propyl ester) (GMA-IDA). FTIR and 7Li solid-state NMR spectra demonstrate the interactions of Li+ ions with both the ether oxygen of the PEGMEM and the nitrogen atom of the GMA-IDA segments. Moreover, 7Li solid-state NMR shows that the lithium ions are preferentially coordinated to the GMA-IDA segment. The Tg increases for the copolymers doped with LiClO4. These results indicate the interactions of Li+ with both PEGMEM and GMA-IDA segments form transient cross-links. The Vogel-Tamman-Fulcher (VTF)-like behavior of conductivity implies the coupling of the charge carriers with the segmental motion of the polymer chains. The dependence of the maximum conductivity on the composition of the copolymers and the doping lithium ion concentration was determined. The GMA-IDA unit in the copolymer improves the dissociation of the lithium salt, the mechanical strength and the conductivity.  相似文献   

12.
Amidoximated chitosan‐g‐poly(acrylonitrile) (PAN) copolymer was prepared by a reaction between hydroxylamine and cyano group in chitosan‐g‐PAN copolymer prepared by grafting PAN onto crosslinked chitosan with epychlorohydrine. The adsorption and desorption capacities for heavy metal ions were measured under various conditions. The adsorption capacity of amidoximated chitosan‐g‐PAN copolymer increased with increasing pH values, and was increased for Cu2+ and Pb2+ but a little decreased for Zn2+ and Cd2+ with increasing PAN grafting percentage in amidoximated chitosan‐g‐PAN copolymer. In addition, desorption capacity for all metal ions was increased with increasing pH values in contrast to the adsorption results. Stability constants of amidoximated chitosan‐g‐PAN copolymer were higher for Cu2+ and Pb2+ but lower for Zn2+ and Cd2+ than those of crosslinked chitosan. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 469–476, 1999  相似文献   

13.
Ionic conductivities of salt complexes of polyoxyethylene (PEO)-containing star-shaped block copolymers and copolymers with uniform grafts were measured. The results were compared with the thermal characteristics and crystallinity of the complexes obtained from DSC and WAXD analysis. The conductivity increases with PEO content of the copolymers, more noticeably at PEO contents over 50%. For the complexes of the star-shaped block copolymers of styrene (S) and ethylene oxide (EO), conductivity decreases in the following order of salts: KCNS > NH4CNS > NaCNS. The room temperature conductivity of the KCNS complex with EO/K ratio = 20 can reach a value of 2 × 10?5 S cm?1 at 57% PEO content of the copolymer. The complex with FeCl2 displays a conductivity even higher than that of the NaCNS complex. Addition of γ-butyrolactone reduces the crystallinity and enhances markedly the ionic conductivity. For complexes of the copolymers with uniform PEO grafts the conductivity decreases in the following order of salts: KCNS > LiClO4 > FeCl2. Complexes with LiClO4 exhibit a maximum conductivity at EO/Li = 20. For different kinds of copolymers with uniform PEO grafts, conductivity of the complexes increases in the order: PS-g-PEO < PMMA-g-PEO < polymethyl acrylate-g-PEO.  相似文献   

14.
The ionic conductivity of PAN‐TiO2‐LiClO4 as a function of TiO2 concentration and temperature has been reported. The electrolyte samples were prepared by solution casting technique. Their conductivity was measured using the impedance spectroscopy technique. The highest room temperature conductivity of 1.8 × 10?4 S cm?1 was obtained at 7.5 wt % of TiO2 filler. It was observed that the relationship between temperature and conductivity were linear, fitting well in Arrhenius and not in Vogel‐Tamman‐Fulcher equation. The pre‐exponential factor, σ0 and Ea are 1.8 × 10?4 S cm?1 and 0.15 eV, respectively. The conductivity data have been supported by differential scanning calorimeter (DSC) analysis. DSC analysis showed that there was a significant change in glass transition temperature (Tg) with the filler concentration. The SEM micrograph revealed that the TiO2 particles are dispersed in the electrolyte, thus enhancing its conductivity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A new photosensitive acrylate monomer having a pendant chlorocinnamoyl moiety (APCSK) was copolymerized with methyl methacrylate (MMA) in different feed compositions in ethyl acetate solution at 70°C using benzoyl peroxide as a free‐radical initiator. The newly synthesized copolymers were characterized by FTIR, 1H and 13C nuclear magnetic resonance (NMR) spectral techniques, as well as by size‐exclusion chromatography. Their thermal behaviour was assessed by thermogravimetric analysis in air and differential scanning calorimetry under nitrogen atmosphere. The copolymers exhibit no phase separation since there is only one glass transition temperature (Tg) value in the region of copolymer composition studied. The reactivity ratios of the comonomers were calculated by adopting linearization methods such as the Fineman–Ross (F‐R), Kelen–Tudos (K‐T) and extended Kelen–Tudos (ExtK‐T) methods, and by a non‐linear error‐in‐variables model method (EVM) using a computer program (RREVM). The results suggest that MMA is more reactive than APCSK and that their copolymerization leads to the formation of random copolymers. The photosensitivity of the copolymer samples was studied in solution as well as in thin films through UV irradiation. The influence of different factors, including solvent nature, concentration, temperature, photosensitizer and copolymer composition, on the rate of photocrosslinking of the photoreactive copolymers was investigated for effective industrial application of these polymers as negative photoresists. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
A work was carried out on a solid polymeric electrolyte system comprising blends of poly (vinyl chloride) and liquid 50% epoxidized natural rubber (LENR50) as a polymer host with LiClO4 as a salt and prepared by solution casting technique. In this paper, the main study was the effect of LiClO4 salt concentration on the electrolyte properties. The effect of the salt on the electrolyte properties was characterized and analyzed with impedance spectroscopy (EIS), X‐ray diffraction (XRD), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM). The EIS result showed that highest ionic conductivity was obtained at 30 wt % salt with a value of 2.3 × 10?8 S cm?1. The XRD results revealed that the LiClO4 salt was fully complexed within the polymer host as no sharp peaks were observed. However, above 30 wt % of salt, some sharp peaks were observed. This phenomenon was caused by the association of ions. Meanwhile, DSC analysis showed that Tg increased as the salt content increased. This implied that LiClO4 salt had interaction with polymer host by forming coordination bond. The morphologies' studies showed that good homogeneity and compatibility of the electrolyte were achieved. Upon the addition of the salt, formation of micropores occurred. It was noted that micropores which aid in mobility of ions in the electrolyte system has increased the ionic conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
A series of polyurethanes (PUs) with different polyether soft segments [polydioxolane (PDXL), polyethylene glycol (PEG), or PDXL/PEG] were synthesized successfully, and solid polymer electrolytes based on PU/LiClO4 complexes were prepared. The relations between structure and the ionic conductive properties of the PU‐based electrolytes were investigated by means of Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and complex impedance analysis. Results showed that the glass‐transition temperature (Tg) of PDXL–PU was lower than that of PEG–PU. Doped lithium perchlorate (LiClO4) salt could be dissolved well in soft segments of PDXL–PU. The ionic conductivity of the PDXL–PU/LiClO4 complex could reach a value of 2 × 10?5 S/cm at room temperature without the addition of an organic plasticizer. The system with PDXL/PEG as a soft segment had a higher Tg and a lower ionic conductivity than the one with PDXL as a soft segment. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 103–111, 2002  相似文献   

18.
The grafting of a phenate bearing sulfonate group in solution onto commercially available poly(VDF‐co‐HFP) copolymers, where VDF and HFP stand for vinylidene fluoride and hexafluoropropene, respectively, is presented. This reaction leads to novel fluoropolymers, bearing aryl sulfonic acid side functions, which are fuel cell membrane precursors. A mechanism similar to the grafting of bisphenol onto VDF‐containing copolymers is discussed. First, the sulfonate phenate is modified to give the didecyldimethylammonium bromide sulfonate phenate salt, in order to promote the substitution onto a fluorine atom in VDF unit adjacent to one HFP unit onto a fluorine atom in the copolymer. The substitution of this salt onto the fluorinated copolymer yields low molar percentages of grafted phenate, ranging from 1.8 to 5.1 mol‐%, whereas it reaches values up to 13 mol‐% grafting when the NH2‐CH2‐CH2‐S‐CH2‐CH2‐C6H4‐SO3Na amine is used as the grafting agent. NMR characterization is used to monitor the grafting process. The electrochemical properties of the resulting phenate grafted‐poly(VDF‐co‐HFP) copolymer are studied. The theoretical ion exchange capacities are half that of Nafion®. The proton conductivities are also lower than that of Nafion®, although one conductivity measurement reached a value of 5.1 mS cm–1, showing a non‐negligible conductivity. The water uptake is lower than these noted for a sulfonated amine‐grafted copolymer, and is of the same order as that for Nafion®. Finally, it is shown that these novel materials start to decompose above 200 °C, showing a similar thermostability as that of an amino‐containing aryl sulfonate‐grafted poly(VDF‐co‐HFP) copolymer.  相似文献   

19.
Well‐defined azobenzene‐containing side chain liquid crystalline diblock copolymers composed of poly[6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate] (PAzoMA) and poly(glycidyl methacrylate) (PGMA) were synthesized by a two‐step reversible addition–fragmentation chain transfer polymerization (RAFT). The thermal liquid‐crystalline phase behavior of the PGMA‐b‐PAzoMA diblock copolymers in bulk were measured by differential scanning calorimetry (DSC) and polarized light microscopy (POM). The synthesized diblock copolymers exhibited a smectic and nematic liquid crystalline phase over a relatively wide temperature range. With increasing the weight fraction of the PAzoMA block, the phase transition temperatures, and corresponding enthalpy changes increased. Atomic force microscope (AFM) measurements confirmed the formation of the microphase separation in PGMA‐b‐PAzoMA diblock copolymer thin films and the microphase separation became more obvious after cross‐linking the PGMA block. The photochemical transition behavior of the PGMA‐b‐PAzoMA diblock copolymers in solution and in thin films were investigated by UV–vis spectrometry. It was found that the transcis isomerization of diblock copolymers was slower than that of the corresponding PAzoMA homopolymer and the photoisomerization rates decreased with increasing either the length of PAzoMA block or PGMA block. The photo‐induced isomerization in solid films was quite different with that in CHCl3 solution due to the aggregation of the azobenzene chromophore. The cross‐linking structures severely suppressed the photoisomerization of azobenzene chromophore. These results may provide guidelines for the design of effective photo‐responsive anisotropic materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2165–2175, 2013  相似文献   

20.
Surface‐modified polypropylene (PP) films with thermally and photochemically sensitive copolymers consisting of N‐(2‐hydroxypropyl)methacrylamide (HPMA) and 4‐(4‐methoxyphenylazo)phenyl methacrylate (MPAP), poly(HPMA‐co‐MPAP)‐g‐PP (abbreviated g‐PP) film, were prepared by graft copolymerization with an Ar‐plasma postpolymerization technique. The surfaces of the g‐PP films were characterized by means of X‐ray photoelectron spectroscopy; the percentage grafting of poly(HPMA‐co‐MPAP) with a number‐average molecular weight of 3.28 × 104 was 7.12%, and the molar ratio of HPMA–MPAH in the copolymer was 0.75:0.25. The stimuli‐sensitive adsorption of albumin and polystyrene microspheres on the g‐PP film was also measured. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 143–148, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号