首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi‐walled carbon nanotubes/carbon fiber (MWCNTs/CF) hybrid fillers are employed to prepare MWCNTs/CF/epoxy composites. Results reveal that a great improvement of the thermal conductivities of the epoxy composites with the addition of MWCNTs/CF hybrid fillers, and the thermal conductivity of the MWCNTs/CF/epoxy composites is 1.426 W/mK with 8 vol% treated MWCNTs/CF hybrid fillers (5 vol% MWCNTs + 3 vol% CF). Both the flexural and impact strength of the MWCNTs/CF/epoxy composites are increased firstly, but decreased with the excessive addition of MWCNTs. The flexural and impact strength of the MWCNTs/epoxy composites are optimal with 2 vol% MWCNTs. For a given MWCNTs/CF hybrid fillers loading, the surface treatment of MWCNTs/CF hybrid fillers can further increase the thermal conductivities and mechanical properties of the MWCNTs/CF/epoxy composites. POLYM. COMPOS., 35:2150–2153, 2014. © 2014 Society of Plastics Engineers  相似文献   

2.
In this study, the dispersion of multi‐walled carbon nanotubes (MWCNTs) in epoxy was facilitated by an anionic surfactant, linear alkyl benzene sulfonic acid. Different types of composites were prepared using a fixed amount of MWCNTs (0.5 wt%), in absence of solvent/surfactant, in presence of solvent and solvent/surfactant. The composites were characterized using Fourier transform infrared spectrophotometer, thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), universal testing machine, pendulum impact system, X‐ray diffraction, and scanning electron microscope. The epoxy/MWCNTs nanocomposite exhibited significantly higher mechanical properties due to the better dispersion in the presence of the surfactant. The tensile strength and flexural strength were increased by 75% and 108%, respectively. The thermal, structural, and morphological analyses were also excellent as a result of the better dispersion. In addition, the solvent‐surfactant behavior was hypothesized for the epoxy/MWCNTs system. POLYM. ENG. SCI., 59:E80–E87, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
《Ceramics International》2016,42(14):15171-15176
The preparation and mechanical behavior of metakaolin-based geopolymer nanocomposite reinforced with multi-walled carbon nanotubes are presented in this study. In this work, Multiwall carbon nanotubes (MWCNTs) were added to the metakaolin-based geopolymer paste at 0, 0.5, or 1 wt% concentration. For each specimen, the mechanical properties were tested at the age of 7, 14 and 28 days. TEM and FESEM were employed to evaluate the dispersion quality of MWCNTs within the metakaolin geopolymer matrix and determine their strengthening mechanism. The test results showed that the addition of about 0.5 wt% MWCNTs increased the compressive and flexural strength by as much as 32% and 28%, respectively. Based on these results, the MWCNTs can act as effective bridges to minimize and limit the propagation of micro cracks through the metakaolin-based geopolymer nanocomposite under the conditions of homogenous dispersion and good bonding between the MWCNTs and the surrounding metakaolin-based geopolymer paste.  相似文献   

4.
《Polymer Composites》2017,38(8):1640-1645
A biobased epoxy monomer (GA‐II) derived from gallic acid for multiwalls carbon nanotubes’ (MWCNTs) dispersion improvement is reported in this article. The aromatic group in its molecular structure made it to be absorbed onto the surface of MWCNTs via π‐π interactions and the GA‐II anchored MWCNT could be homogeneously dispersed in DGEBA matrix via sonication. That was proved by Raman and UV spectroscopy as well as scanning electron microscope. After curing reaction, the epoxy/MWCNT composites demonstrated enhanced mechanical properties, excellent thermal conductivity, and high electrical conductivity. With the addition of only 0.5 wt% GA‐II modified MWCNT, the tensile strength, tensile modulus, flexural strength, and flexural modulus of the composites were improved by 28%, 40%, 22%, and 16%, respectively. The thermal and electrical conductivities were also improved from 0.15 to 0.25 W/m K (67% increased) and from 0.7 × 10−14 to 0.24 × 10−4 S cm−1 (10 orders increased). POLYM. COMPOS., 38:1640–1645, 2017. © 2015 Society of Plastics Engineers  相似文献   

5.
Well‐dispersed multiwalled carbon nanotubes/polyurethane (MWCNTs/PU) composites were synthesized in situ polymerization based on treating MWCNTs with nitric acid and silane coupling agent. The morphology and degree of dispersion of the MWCNTs were studied using a high resolution transmission electron microscopy (HR‐TEM) and X‐ray powder diffraction (XRD). The result showed that MWCNTs could be dispersed still in the PU matrix well with the addition of 2 wt% MWCNTs. The thermal and mechanical properties of the composites were characterized by dynamic mechanical thermal analysis, thermogravimetric analysis, tensile, and impact testing. The result suggested that the glass transition temperature (Tg) of composites increased greatly with increasing MWCNTs content slightly, and the MWCNTs is also helpful to improve mechanical properties of composites. Furthermore, the composites have an excellent mechanical property with the addition of 0.5 wt% MWCNTs. The electrical property testing indicates that the MWCNTs can improve evidently the electrical properties of composites when adding 1 wt% MWCNTs to the PU matrix. The volume resistivity of composites reaches to an equilibrium value. POLYM. COMPOS., 33:1866–1873, 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
Multi-walled carbon nanotubes (MWCNTs) were grafted onto carbon fibers (CFs) using an injection chemical vapor deposition method. The orientation and length (16.6–108.6 μm) of the MWCNTs were controlled by the surface treatment of the CFs and the growth time, respectively. The interface between the MWCNTs and the CFs indicated the grafted CNTs were immobilized by embedding catalyst on CFs. Two orders of magnitude increase in the specific surface areas of CFs was obtained by grafting the MWCNT. MWCNT–CF hybrids exhibited good wettability with the epoxy resin due to the surface roughness and capillary action. Single-fiber composite fragmentation tests revealed an remarkable improvement of interfacial shear strength (IFSS) controlled by the orientation and length of MWCNTs. MWCNTs with an perpendicular alignment and long length showed a high IFSS in epoxy composites due to better wettability and a large contact interface between the hybrids and the resin. Hybrids with an optimum length (47.2 μm) of aligned MWCNTs showed a dramatic improvement of IFSS up to 175% compared to that of pristine CFs.  相似文献   

7.
The nanometer carbon black (CB) was employed to prepare epoxy resin/carbon black (EP/CB) composites by blending-casting method. The different modified methods of silicone coupling agent were used to improve the dispersion of CB in epoxy resin. The mechanical and thermal properties of EP/CB composites were investigated. Experimental results showed that the mechanical properties increased at first, but decreased with excessive addition of CB. When the mass fraction of CB was 2%, the mechanical properties were maximum. The use of modified CB significantly enhanced the mechanical properties of the composites. For given CB loading, the CB modified by pretreatment method displayed better dispersion in the epoxy resin than that of the direct mixing method. SEM observation revealed that the tensile fracture surface of the composite filled with 2 wt% modified CB held more microcracks than that of 5 wt% modified CB, and the formed microcracks could consume more energy of rupture, finally to have better tensile strength. DSC analysis showed that the glass transition temperature (Tg) of the composites increased with the increasing mass fraction of CB.  相似文献   

8.
A remarkable synergetic effect between the multi-graphene platelets (MGPs) and multi-walled carbon nanotubes (MWCNTs) in improving the mechanical properties and thermal conductivity of epoxy composites is demonstrated. Stacking of individual two-dimensional MGPs is effectively inhibited by introducing one-dimensional MWCNTs. Long and tortuous MWCNTs can bridge adjacent MGPs and inhibit their aggregation, resulting in a high contact area between the MGP/MWCNT structures and the polymer matrix. Scanning electron microscope images of the fracture surfaces of the epoxy matrix showed that MWCNT/MGP hybrid nanofillers exhibited higher solubility and better compatibility than individual MWCNTs and MGPs did. The tensile strength of GD400-MWCNT/MGP/epoxy composites was 35.4% higher than that of the epoxy alone, compared to only a 0.9% increase in tensile strength for MGP/epoxy composites over the epoxy compound. Thermal conductivity increased by 146.9% using GD400-MWCNT/MGP hybrid fillers and 23.9% for MGP fillers, compared to non-derivatised epoxy.  相似文献   

9.
采用硅烷偶联剂(A-174)偶联、高锰酸钾接枝和乙酰化包覆等3种方法对香蕉纤维进行表面改性,制备了改性香蕉纤维增强环氧树脂复合材料,测试其拉伸、弯曲、压缩、冲击等力学性能。结果表明,偶联、接枝、包覆等表面改性均能明显改善香蕉纤维与基体树脂的相容性,提高复合材料的力学性能,其中偶联改性的效果最好。当改性香蕉纤维含量为10wt%时,与未改性的香蕉纤维比较,复合材料的拉伸强度、弯曲强度、压缩强度分别提高了1.8、1.0、2.6倍;随着纤维含量的增加,复合材料的力学性能明显提高。  相似文献   

10.
This study aims to examine the morphology and mechanical properties (tensile, flexural, and compressive) of epoxy composites reinforced with epoxy date palm leaves (EDPL), epoxy date palm branch (EDPB), and epoxy/hardener date palm core shell (EDPC) fibers (particle size <1 μm depend on the date palm fibers). A three-step technique was used to obtain the composites. The EDPL composites showed a maximum tensile strength of 3.45 MPa, while the EDPB composites showed maximum compressive and flexural rigidity of 9.46 and 5.55 MPa, respectively, owing to the good compatibility of fiber-matrix bonding. In this work, epoxy composites reinforced with date palm fibers (DPF) leaves, branches, and core shell were recycled using a cost-effective and easily reproducible three-step technique. EDPC fibers fabricated with 64.65% weight carbon fibers content demonstrated improved tensile strengths and stiffness properties. The three samples of palm date composites revealed mechanical properties that could be used to trial these fibers for manufacturing purposes, and to exploit their extraordinary mechanical properties shown in current results.  相似文献   

11.
The melt‐mixing polyamide 66 (PA66) composite samples that incorporated pure, acid‐ and amine‐functionalized multiwalled carbon nanotubes (MWCNTs) were prepared in order to enhance mechanical and frictional properties of PA66 composites. The homogeneous dispersion of amine‐functionalized MWCNTs (D‐MWCNTs) in PA66 matrix was observed from the significantly uniform morphology of tensile fractured surface of the composites. Differential scanning calorimetry measurement indicates that D‐MWCNTs acted as effective nucleation agent for PA66 matrix and the crystallinity of PA66 was increased. The fracture stress and tensile modulus of the composites were significantly improved with the incorporation of D‐MWCNTs, owing to the good dispersion of D‐MWCNTs. Compared with PA66, the PA66 composites with 1.0 wt% D‐MWCNTs were improved considerably in both wear and friction properties owing to the change of the tribological mechanisms. The good dispersion of D‐MWCNTs in PA66 and good interface compatibility between D‐MWCNTs and PA66 favored the formation of a thin layer on the contact surfaces during wear and friction test, which played an important role in reducing wear and friction of the composite and in suppressing the transverse cracks. These results prove the importance of D‐MWCNTs in a positive change of the mechanical and frictional properties of PA66 composites and suggest the applicability prospect of PA66/D‐MWCNTs composites in engineering components.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
In this study, carboxylic acid functionalized carbon nanotubes (CNTs) were used to modify epoxy with intent to develop a nanocomposite matrix for hybrid multiscale composites combining benefits of nanoscale reinforcement with well‐established fibrous composites. CNTs were dispersed in epoxy by using high energy sonication, followed by the fabrication of epoxy/CNTs composites. The processibility of CNTs/epoxy systems was explored with respect to their dispersion state and viscosity. The dependences of viscosity, mechanical and thermomechanical properties of nanocomposite system on CNTs content were investigated. The dispersion quality and reagglomeration behavior of CNTs in epoxy and the capillary infiltration of continuous fiber with the epoxy/CNTs dispersion were characterized using optical microscope and capillary experiment. As compared with neat epoxy sample, the CNTs nanocomposites exhibit flexural strength of 126.5 MPa for 1 wt% CNTs content and impact strength of 28.9 kJ m?2 for 0.1 wt% CNTs content, respectively. A CNTs loading of 0.1 wt% significantly improved the glass transition temperatures, Tg, of the nanocomposites. Scanning electron microscopy (SEM) was used to examine the fracture surface of the failed specimens. It is demonstrated that the properties of CNTs/epoxy system are dispersion‐dominated and interface sensitive. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

13.
The continuous highly aligned hybrid carbon nanofibers (CNFs) with different content of acid-oxidized multi-walled carbon nanotubes (MWCNTs) were fabricated through electrospinning of polyacrylonitrile (PAN) followed by a series of heat treatments under tensile force. The effects of MWCNTs on the micro-morphology, the degree of orientation and ordered crystalline structure of the resulting nanofibers were analyzed quantitatively by diversified structural characterization techniques. The orientation of PAN molecule chains and the graphitization degree in carbonized nanofibers were distinctly improved through the addition of MWCNTs. The electrical conductivity of the hybrid CNFs with 3 wt% MWCNTs reached 26 S/cm along the fiber direction due to the ordered alignment of MWCNTs and nanofibers. The reinforcing effect of hybrid CNFs in epoxy composites was also revealed. An enhancement of 46.3% in Young’s modulus of epoxy composites was manifested by adding 5 wt% hybrid CNFs mentioned above. At the same time, the storage modulus of hybrid CNF/epoxy composites was significantly higher than that of pristine epoxy and CNF/epoxy composites not containing MWCNTs, and the performance gap became greater under the high temperature regions. It is believed that such a continuous hybrid CNF can be used as effective multifunctional reinforcement in polymer matrix composites.  相似文献   

14.
The epoxy resin used as the bonding agent in carbon fiber-reinforced polymer (CFRP) strengthening systems was modified by the infusion of multiwalled carbon nanotubes (MWCNTs). Two types of surfactants, Triton X-100 and C12E8, were used to disperse the nanotubes in the epoxy resin employing ultrasonic mixing. Dynamic mechanical analysis and tensile tests were conducted to study the effect of the surfactant-assisted dispersion of nanotubes on the thermal and mechanical properties of epoxy composites. The morphology of the epoxy composites was interpreted using scanning electron microscopy (SEM). Moreover, the effect of surfactant treatment on the structure of nanotubes was investigated by Fourier transform infrared (FT-IR). Based on the experimental results, the tensile strength and the storage modulus of the epoxy resin were increased by 32% and 26%, respectively, by the addition of MWCNTs. This was attributed to the homogeneous dispersion of nanotubes in the epoxy resin according to the SEM images. Another reason for the enhancement in the tensile properties was the reinforced nanotube/epoxy interaction as a result of the surfactant anchoring effect which was proved by FT-IR. A moderate improvement in the glass transition temperature (T g) was recorded for the composite fabricated using Triton X-100, which was due to the restricted molecular motions in the epoxy matrix. To characterize the temperature-dependent tensile behavior of the modified epoxy composites, tensile tests were conducted at elevated temperatures. It was revealed that the MWCNT modification using surfactant substantially improves the tensile performance of the epoxy adhesive at temperatures above the T g of the neat epoxy.  相似文献   

15.
The mechanical response of epoxy resins filled without treated carbon nanofibers and carboxylated ones has been evaluated through tensile tests. The elastic properties did not improve compared to the neat epoxy resin regardless of filler content or functionalization treatment, while the tensile strength and the elongation at break were reduced for the highest filler content (1 wt%). Fractographic analysis showed that composites reinforced with carboxylated nanofibers showed better filler dispersion than those without treatment. However, in both cases, the fibers tended to agglomerate and the formation of porosity was favored. The size of bundles of nanofibers rose with the content of nanofiller and for the same addition of carbon nanofibers, the size and distribution was respectively bigger and wider for the untreated carbon nanofibers‐reinforced composites than for the carboxylated carbon nanofiber‐reinforced composites. These defects degraded the mechanical response. The dilute suspension of clusters model was applied to estimate the elastic properties, showing agreement with the experimental results. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
碳纳米管添加量对环氧树脂基复合材料性能的影响   总被引:6,自引:0,他引:6  
采用模具浇铸法,通过对多壁纳米碳管(MWCNTs)进行表面官能化,制备了MWCNTs/环氧树脂复合材料。使用TEM、SEM、HRSEM和万能材料拉伸机对材料的结构和性能进行了测试和表征,并分析了微观结构与性能之间的关系。结果表明:当MWCNTS的添加量达到8%时,复合材料的综合性能达到最佳,拉伸强度和断裂伸长率分别提高13%和127.8%。  相似文献   

17.
A novel electrophoretic deposition (EPD) method was employed for grafting multiwalled carbon nanotubes (MWCNTs) on carbon fibers, which, after impregnation with bisphenol A dicyanate ester (BADCy), synergistically reinforced BADCy matrix composites (CNT‐C/BADCy). The effect of MWCNT presence on the mechanical properties of the composites was investigated. Composite tensile strength increased by 45.2% for an EPD duration of 2 min, while flexural strength exhibited a decreasing trend with EPD duration. Optical microscopy revealed that the existence of MWCNTs enhanced the fiber‐matrix interface while a large number of CNTs were observed to have pulled‐out from the matrix, a finding which explained the observed tensile strength increase in terms of energy dissipation by the specific toughening mechanism. The flexural strength decrease of the composites with CNTs as compared to specimens without nanotubes was found linked to the increased stress concentration in the BADCy matrix due to tube presence which weakens the adhesion between carbon fabrics. In a word, carbon nanotubes will enhance the micro interface and weaken the macro interface of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45100.  相似文献   

18.
The uniform dispersion of carbon nanotubes in epoxy resin is one of the key factors to achieve the composites with desirable mechanical and physical property enforcement. However, the widely used dispersion methods have their own respective limitations in pursuing satisfactory nanotube dispersion. Herein, a new dispersion approach, based on the synergetic effect of combining high speed internal mixing with running simultaneously continuous ultrasonication treatment, has been proposed. The dispersion of nanotubes was carried out in a high speed internal mixer, consisting of twin kneading block structured rotors and an integrated ultrasonic horn, which was intercalated into the central position between the twin rotors. At first, the FEM simulation was conducted to optimize the kneading element assembly and illuminate the geometry influence of the ultrasonic horn intercalation on the mixing flow. Afterwards, to confirm the feasibility of the approach, pristine MWCNTs (P‐CNTs), oxidation modified MWCNTs (M‐CNTs) and M‐CNTs/multilayer graphene nanoplatelets (MGPs) hybrid are dispersed into epoxy resin. The dispersion of each sample in its liquid epoxy state is investigated under transparent optical microscopy. More characterizations, including SEM, TG/DTA, tensile test, and thermal conductivity measurements, were conducted on the cured composites. Competitive reinforcements on mechanical tensile property and thermal conductivity were observed. Especially, at a 1.5 wt% M‐CNTs/MGPs hybrid content, the composite mechanical tensile strength and thermal conductivity were 47% and 30% higher than those of neat epoxy. This preliminary study demonstrates the feasibility and practicability of the proposed approach to achieving good MWCNTs dispersion and distribution in epoxy resin. POLYM. COMPOS., 37:870–880, 2016. © 2014 Society of Plastics Engineers  相似文献   

19.
The toughness of cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (ERL‐4221) has been improved by using multiwalled carbon nanotubes (MWCNTs) treated by mixed acids. The MWCNT/ERL‐4221 composites were characterized by Raman spectroscopy and their mechanical properties were investigated. A significant increase in the tensile strength of the composite from 31.9 to 55.9 MPa was obtained by adding only 0.05 wt % of MWCNTs. And a loading of 0.5 wt % MWCNTs resulted in an optimum tensile strength and cracking energy, 62.0 MPa and 490 N cm, respectively. Investigation on the morphology of fracture surface of the composites by field emission scanning electron microscopy demonstrated the crack pinning‐front bowing and bridging mechanisms of toughening. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Multi-walled carbon nanotubes (MWCNTs) were used in the low-viscosity, thermosetting polyester epoxy/amine resin LY-5052 with high temperature resistance to fabricate MWCNT/epoxy composites. Tensile tests of the specimens were carried out to obtain mechanical properties of MWCNT/epoxy composites for various weight-percents (wt.%) of MWCNTs. Experimental results show that the Young’s modulus and the tensile strength of the composites can be significantly improved by adding a small percentage of MWCNT. A new form of the rule of mixtures, including an exponential shape function, length efficiency parameter, orientation efficiency factor and a waviness parameter, is proposed for a more accurate prediction of the mechanical properties of MWCNT-reinforced epoxy composites, for both low and high wt.% ranges. In order to verify the suitability of the model, the ensuing predictions are compared to the available experimental data in the literature. Results demonstrate a good predictability of the modified form over a wide range of tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号