首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate the physical and thermo-mechanical characterization of silicon carbide filled needle punch nonwoven jute fiber reinforced epoxy composites. The composite materials were prepared by mixing different weight percentages (0–15 wt.%) of silicon carbide in needle punch nonwoven jute fiber reinforced epoxy composites by hand-lay-up techniques. The physical and mechanical tests have been performed to find the void content, water absorption, hardness, tensile strength, impact strength, fracture toughness and thermo-mechanical properties of the silicon carbide filled jute epoxy composites. The results indicated that increase in silicon carbide filler from 0 to 15 wt.% in the jute epoxy composites increased the void content by 1.49 %, water absorption by 1.83 %, hardness by 39.47 %, tensile strength by 52.5 %, flexural strength by 48.5 %, and impact strength by 14.5 % but on the other hand, decreased the thermal conductivity by 11.62 %. The result also indicated that jute epoxy composites reinforced with 15 wt.% silicon carbide particulate filler presented the highest storage modulus and loss modulus as compared with the unfilled jute epoxy composite.  相似文献   

2.
Bisphenol‐C‐formaldehyde‐toluene‐2,4‐di isocyanate polyurethane (PU) has been synthesized at room temperature and used for the fabrication of jute and jute–rice husk/wheat husk hybrid composites. PU–jute and PU–jute–RH/WH composites were prepared under pressure of 30.4 MPa at room temperature for 8 h, while PU–jute–RH/WH composites were prepared under same pressure at 110°C for 5 h. PU–jute composite has good tensile strength and flexural strength (50–53 MPa), while PU–jute–RH/WH hybrid composites have moderate tensile strength (9–11 MPa) and a fairly good flexural strength (15–31 MPa). Composites possess 1.1–2.2 kV electric strength and 0.94–1.26 × 1012 ohm cm volume resistivity. Water absorption in PU–jute composite is different in water (9.75%), 10% HCl (12.14%), and 10% NaCl (6.05%). Equilibrium water uptake time in salt environment is observed 96 h, while in pure water and acidic environments it is 192 h. In boiling water equilibrium water content and equilibrium time are found to be 21.7% and 3 h, respectively. Water absorption increased 2.2 times in boiling water, whereas equilibrium time reduced 64 times. Thus, PU–jute composite has excellent hydrolytic stability against boiling water, 10% HCl, and 10% NaCl solutions. Fairly good mechanical and electrical properties and excellent hydrolytic stability of composites signify their usefulness for low cost housing units and in electrical and marine industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2363–2370, 2006  相似文献   

3.
The aim of the present study is to investigate and compare the mechanical properties of raw jute and sisal fiber reinforced epoxy composites with sodium hydroxide treated jute and sisal fiber reinforced epoxy composites. This is followed by comparisons of the sodium hydroxide treated jute and sisal fiber reinforced composites. The jute and sisal fibers were treated with 20% sodium hydroxide for 2 h and then incorporated into the epoxy matrix by a molding technique to form the composites. Similar techniques have been adopted for the fabrication of raw jute and sisal fiber reinforced epoxy composites. The raw jute and sisal fiber reinforced epoxy composites and the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites were characterized by FTIR. The mechanical properties (tensile and flexural strength), water absorption and morphological changes were investigated for the composite samples. It was found that the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites exhibited better mechanical properties than the raw jute and raw sisal fiber reinforced composites. When comparing the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites, the sodium hydroxide treated jute fiber reinforced composites exhibited better mechanical properties than the latter.  相似文献   

4.
Bisphenol‐C‐epoxy‐toluene diisocyanate polyurethane (PEBCT) has been synthesized and used for the fabrication of jute, jute–rice husk (JRH), and jute–wheat husk (JWH) composites. The composites have been fabricated by hand lay‐up technique under a hydraulic pressure of 30.4 MPa at 135°C for 2.5 h. PEBCT‐J, PEBCT‐JRH, and PEBCT‐JWH possess respectively, tensile strength of 37.4, 9.5, and 14.7 MPa, and flexural strength of 39.6, 12.9, and 21.3 MPa, electric strength of 1.3, 1.8, and 1.9 kV/mm and volume resistivity of 1.40 × 1013, 1.84 × 1013, and 1.91 × 1013 ohm cm. Tensile strength and flexural strength have decreased, while electric strength and volume resistivity are improved upon hybridization. PEBCT‐JWH has better interfacial bond strength and stiffness as compared to PEBCT‐JRH. Moisture uptake behavior of PEBCT‐J in water, 10% HCl and 10% NaCl at room temperature is quite different. Equilibrium moisture content of PEBCT‐J in 10% NaCl (5.5%) is almost half of those in water (11.3%) and 10% HCl (13.6%) environments. Equilibrium time for saline environment is also comparatively low. Equilibrium moisture uptake in boiling water has increased 1.84 times, while equilibrium time has decreased 15.3 times. The composites may be useful for low load bearing in construction industries and for marine applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
Carbon fiber composites have witnessed an increased application in aerospace and other civil structures due to their excellent structural properties such as specific strength and stiffness. However, unlike other structural materials, carbon fiber composites have not been as widely studied. Hence, their increased application is also accompanied with a serious concern about their long‐term durability. Many of these applications are exposed to multiple environments such as moisture, temperature, and UV radiation. Composites based on conventional epoxies readily absorb moisture. However, recently synthesized fluorinated epoxies show reduced moisture absorption and hence potentially better long‐term durability. The aim of this project is to study the effect of moisture absorption on fluorinated‐epoxy‐based carbon fiber composites and their comparison with conventional epoxy carbon fiber‐based composites. Microbond tests are performed on fluorinated and nonfluorinated epoxy‐based single fiber samples before and after boiling water degradation. It is found that fluorinated epoxy‐based single fiber coupons showed relatively reduced degradation of interface when compared with the nonfluorinated epoxy single fiber coupons. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
Soybean oil/epoxy‐based composites are prepared by solid freeform fabrication (SFF) methods. SFF methods built materials by the repetitive addition of thin layers. The mixture of epoxidized soybean oil and epoxy resin is modified with di‐, tri‐, or polyethylene amine gelling agent to solidify the materials until curing occurs. The high strength and stiffness composites are formed through fiber reinforcement. E‐glass, carbon, and mineral fibers are used in the formulations. The type of fiber affects the properties of the composites. It was found that a combination of two types of fibers could be used to achieve higher strength and stiffness parts than can be obtained from a single fiber type. In addition, the effects of curing temperature, curing time, and fiber concentration on mechanical properties of composites are studied and reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 356–363, 2004  相似文献   

7.
The objective of this research article is to compare the mechanical and tribological properties of jute‐glass‐fiber‐reinforced epoxy (J‐G‐E) hybrid composites with and without fly ash particulate filler. A dry hand lay‐up technique is used to fabricate all the laminates. The properties including flexural strength, tensile strength, flexural modulus, and erosion behavior of all the composites are evaluated as per American Society for Testing and Materials (ASTM) standards. The fly ash particulate‐filled hybrid composite shows a better mechanical and tribological property. The maximum flexural strength and flexural modulus are obtained for GJGJ+ 5 wt% fly ash filler epoxy composites. Whereas the maximum tensile strength is obtained for GJJG+ 10 wt% fly ash filler epoxy composites. Scanning Electron Microscopy (SEM) analysis also has been carried out to categorize mechanical and tribological behavior of composites. POLYM. COMPOS. 37:658–665, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
In this study, randomly oriented short jute/bagasse hybrid fiber‐reinforced epoxy novolac composites were prepared by keeping the relative volume ratio of jute and bagasse of 1:3 and the total fiber loading 0.40 volume fractions. The effect of jute fiber hybridization and different layering pattern on the physical, mechanical, and thermal properties of jute/bagasse hybrid fiber‐reinforced epoxy novolac composites was investigated. The hybrid fiber‐reinforced composites exhibited fair water absorption and thickness swelling properties. To investigate the effect of layering pattern on thermomechanical behavior of hybrid composites, the storage modulus and loss factor were determined using dynamic mechanical analyzer from 30 to 200°C at a frequency of 1 Hz. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy. The morphological features of the composites were well corroborated with the mechanical properties. Thermogravimetric analysis indicated an increase in thermal stability of pure bagasse composites with the incorporation of jute fibers. The incorporation of hybrid fibers results better improvement in both thermal and dimensional stable compared with the pure bagasse fiber composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
Polyesteramide polyols have been synthesized by melt condenstion using a mixture of alkanolamines, polyethylene glycols, and dicarboxylic acids/anhydrieds, and the behavior or resin samples as interfacrial agents in unidirectional as well as random composites of jute/epoxy and jute/polyester has been evaluated. Mechanical properties of these composties with or without interfacial agents have been determined along with the effect of water uptake on such properties. The incorporation of polyesteramide polyol (PEAP) resins as interfacila agents has been found to significantly improcve the mechanical properties of jute fiber composites. It has also been found that increasing the hydroxyl value of PEAP results in a better bonding of the composities up to a certain optimum limit of hydroxyl value beyond which the molecular weight of the interfacila agent as well as its bonding strenght decreases. Use of PEAP resin of optimum hydroxyl value and molecular weight also significantly improves the water resistance capacities of jute/epoxy composites.  相似文献   

10.
《Polymer Composites》2017,38(7):1327-1334
Surface modification of jute fibers is necessary to improve the adhesion and interfacial compatibility between fibers and resin matrix before using fibers in polymer composites. In this study, dodecyl gallate (DG) was enzymatically grafted onto the jute fiber by laccase to endow the fiber with hydrophobicity. A hand lay‐up technique was then adopted to prepare jute/epoxy composites. Contact angle and wetting time measurements showed that the surface hydrophobicity of the jute fabric was increased after the enzymatic graft modification. The water absorption and thickness swelling of the DG‐grafted jute fabric/epoxy composite were lower than those of the other composites. The tensile and dynamic mechanical properties of the jute/epoxy composites were enhanced by the surface modification. Scanning electron microscopy images revealed stronger fiber–matrix adhesion in composites with modified fibers. Therefore, the enzymatic graft modification increased the fiber–matrix interface area. The fiber–matrix adhesion was enhanced, and the mechanical properties of the composites were improved. POLYM. COMPOS., 38:1327–1334, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
Jute textile was recycled into composites using different percents of phenol formaldehyde (PF) resin. The effect of the resin percent, from 12 to 30%, on the flexural strength, tensile strength, water absorption, and thickness swelling of the produced composites was studied. To improve the dimensional stability of the produced composites, jute textile was acetylated or steamed. The effect of steaming and acetylation on the structure and thermal stability of jute fibers was studied using Fourier Transform Infrared (FTIR) spectroscopy and Thermogravimetric analysis (TGA), respectively. The effect of these treatments on the flexural strength, tensile strength, water absorption, and thickness swelling of the produced composites was studied. Steaming of jute textile was superior to acetylation in improving the dimensional stability. Cyclic wetting and drying test of the composites showed that steaming of the jute textile resulted in much less irreversible and reversible thickness swelling than in case of using acetylated or untreated jute textile. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3588–3593, 2003  相似文献   

12.
Biocomposites developed from wheat gluten using water without any chemicals as plasticizer and jute fibers as reinforcement have much better flexural and tensile properties than similar polypropylene composites reinforced with jute fibers. Wheat gluten is an inexpensive and abundant co‐product derived from renewable resources and is biodegradable but non‐thermoplastic. Previous attempts at developing biocomposites from wheat gluten have used plasticizers such as glycerol or chemical modifications to make gluten thermoplastic. However, plasticizers have a considerably negative effect on the mechanical properties of the composites and chemical modifications make wheat gluten less biodegradable, expensive and/or environmentally unfriendly. In the research reported, we developed composites from wheat gluten using water as a plasticizer without any chemicals. Water plasticizes wheat gluten but evaporates during compression molding and therefore does not affect the mechanical properties of the composites. The effect of composite fabrication conditions on the flexural, tensile and acoustic properties was studied in comparison to polypropylene composites reinforced with jute fibers. Wheat gluten composites had flexural strength (20 MPa), tensile strength (69 MPa) and tensile modulus (7.7 GPa) values approximately twice those of polypropylene composites. Water is an effective plasticizer for wheat gluten and could be used to develop various types of inexpensive and biodegradable wheat gluten‐based thermoplastics. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Investigations on the influence of exposure to water on the physical properties of untreated and alkali-treated jute and flax fibers and their composites with an epoxy resin were carried out. The moisture uptake led to a strong anisotropic swelling which was more significant for the alkali treated fibers. In general, jute fibers lost roughly 30% of their tenacity after this water exposure, while the tenacity of flax fibers remained unaffected. Due to this, the tensile strength of jute-epoxy composites decreases with increasing water content, while the strength of comparable flax-epoxy composites increases slightly. The dynamic strength of the composites was improved by the use of alkali-treated fibers, the loss of this characteristic value after a 49-days water storage was influenced by the type of fiber and their treatment.  相似文献   

14.
《Polymer Composites》2017,38(7):1396-1403
During the last few years, natural fiber composites are replacing synthetic fiber composites for practical applications due to their advantages like low density, light weight, low cost, biodegradability and high specific mechanical properties. In this connection, the present investigation deals with the fabrication and mechanical properties of unidirectional banana/jute hybrid fiber reinforced composites and compares with the single natural fiber reinforced composites. The physical and mechanical properties of the natural fiber composites were obtained by testing the composite for density, tensile, flexural, inter‐laminar shear, impact, and hardness properties. The composite specimens with different weight percentages of fibers were fabricated by using hand lay‐up technique and testing were carried out as per ASTM standards. Incorporation of both the fibers into epoxy matrix resulted in an increase in mechanical properties up to 30 wt% of fiber loading. It is found that the hybrid composite give encouraging results when compared with the individual fiber composites. The morphologies of the composites are also studied by scanning electron microscope. POLYM. COMPOS., 38:1396–1403, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
The water‐uptake behavior of jute fabric and its composites with polycarbonate and polypropylene was monitor by a digital neutron radiography technique. The thermal neutron radiography facility of neutron transmission radiography (NEUTRA) at spallation source (SINQ) of the Paul Scherrer Institute was used for this work. The internal defects, such as voids, cracks, and inhomogeneity, of the composites were studied. The water‐uptake behavior of the jute fiber was also studied with a digital neutron radiography technique. The natural jute fiber showed higher water absorption than the composites. No voids or inclusions in these composites were observed. Moreover, both the jute and polymer were uniformly distributed and well mixed with the polymer matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
《Polymer Composites》2017,38(5):884-892
A systematic study was performed to describe the effect of epoxidized soybean oil (ESO) on storage modulus, glass transition temperature (T g) and mechanical properties in epoxy resin composites reinforced by jute fabric. In addition to aromatic diglycidylether of bisphenol‐A (DGEBA) resin, a glycerol (GER)‐and a pentaerythritol (PER)‐based aliphatic resin was applied as base resin, which can be also synthesized from renewable feedstock. Based on strip tensile test results, the usual alkali treatment of jute fabric was avoided. By increasing the ESO‐content in aliphatic composites the T g increases, whereas in case of DGEBA, it decreases. The results indicate that although ESO has a significant softening effect, the jute fiber‐reinforced DGEBA composite can be replaced without significant compromise in mechanical properties by a potentially fully bio‐based composite consisting of 25 mass% ESO‐containing aliphatic PER‐reinforced by jute fibers. POLYM. COMPOS., 38:884–892, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
A systematic study was carried out to investigate the effect of alkali treatment and nanoclay on thermomechanical properties of jute fabric reinforced polyester composites (JPC) fabricated by the vacuum‐assisted resin transfer molding (VARTM) process. Using mechanical mixing and sonication process, 1% and 2% by weight montmorillonite K10 nanoclay were dispersed into B‐440 premium polyester resin to fabricate jute fabric reinforced polyester nanocomposites. The average fiber volume was determined to be around 40% and void fraction was reduced due to the surface treatment as well as nanoclay infusion in these biocomposites. Dynamic mechanical analysis (DMA) revealed enhancement of dynamic elastic/plastic responses and glass transition temperature (Tg) in treated jute polyester composites (TJPC) and nanoclay infused TJPC compared with those of untreated jute polyester composites (UTJPC). Alkali treatment and nanoclay infusion also resulted in enhancement of mechanical properties of JPC. The maximum flexural, compression, and interlaminar shear strength (ILSS) properties were found in the 1 wt % nanoclay infused TJPC. Fourier transform‐infrared spectroscopy (FT‐IR) revealed strong interaction between the organoclay and polyester that resulted in enhanced thermomechanical properties in the composites. Lower water absorption was also observed due to surface treatment and nanoclay infusion in the TJPC. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Polyamide 66/clay nanocomposites (PA66CN) were prepared via a melt compounding method using a new kind of organophilic clay, which was obtained through co‐intercalation of epoxy resin and quaternary ammonium into Na‐montmorillonite. The dispersion effect of silicate layers in the matrix was studied by means of XRD and TEM. The silicate layers were dispersed homogeneously and nearly exfoliated in the matrix as a result of the strong interaction between epoxy groups and PA66. The mechanical properties and heat distortion temperature (HDT) of PA66CN increased dramatically. The notched Izod impact strength of PA66CN was 50% higher than that of PA66 when the clay loading was 5 wt.‐%. Even at 10 wt.‐% clay content, the impact strength was still higher than that of PA66. The finely dispersed silicate layers and the strong interaction between silicate layers and the matrix reduced the water absorption, at 10 wt.‐% clay content; PA66CN only absorbs 60% water compared with PA66. The addition of silicate layers changed the crystal structure in PA66CN.  相似文献   

19.
Silver/carbon (Ag/C) nanocables were obtained in the presence of cetyltrimethylammonium bromide (CTAB) under hydrothermal conditions in order to modify epoxy resin. Nanocable is a nanocomposite of nanowire (core) wrapped with one or more outer layers (shell). Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy proved that nanocables consist of a silver nanowire core and a carbon outer shell. The (Ag/C)/epoxy composites were prepared by compounding Ag/C nanocables and epoxy resin. An investigation of the thermal, mechanical, and dielectric properties of these composites showed that the thermal stability and dielectric constant of the composites were enhanced. Interestingly, the breakdown strength of the composites at room temperature increased. Normally, breakdown strength decreases when conducting fillers are added. Fracture morphology of the (Ag/C)/epoxy composite also showed increased toughness. The relationship between the properties and microstructure of the composite was discussed in detail to explain the mechanism behind the change in material properties. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
Mechanical properties of jute fabrics‐reinforced polypropylene composites were measured with reference to fiber loading and found highest at 45% by the weight of jute fabrics. Jute fabrics were treated with potassium permanganate in acid (oxalic acid and sulphuric acid) and alkaline (KOH) media in order to investigate the oxidizing effect on the properties of the composites. Solutions of oxalic acid, sulphuric acid, and KOH were prepared in water as 1.0–10.0% w/v, 0.1–2.0% v/v, and 1.0–10.0% w/v, respectively, where percentage of KMnO4 was maintained at 0.01% w/v. Among the treatments, 5.0% oxalic acid treated jute composite showed better mechanical performance. Thermogravimetric (TG/DTG) data of PP, jute fabrics and composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to PP or jute fabrics. The treatment of jute fabrics improves thermal stability of the composites. Treated jute composites were found less degradable in soil, water and simulated weathering conditions and also found less water sensible compared to control composite (45% w/w jute fabrics). POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号