首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this work is to produce Al2O3-ZrO2 composite from nano-sized powders processed by coprecipitation method. Al2O3 and mixture of Al2O3 + 10 wt.% ZrO2 precipitated successfully by chemical route from aluminum sulfate and zirconium sulfate were pressed under uniaxial compression of 170 MPa and sintered at 1600 °C for 1 h. SEM investigations revealed that, pure alumina sample has a microstructure with coarse grains which anisotropically grown up to 30-40 μm in size. In alumina-zirconia composite, the structure consists of very fine equiaxed grains of typically 2 μm in which zirconia precipitates were uniformly dispersed. By adding zirconia to alumina, hardness and indentation fracture toughness were increased from 11.6 GPa to 16.8 GPa and from 3.2 MPa m1/2 to 4.9 MPa m1/2, respectively. Improvement in fracture toughness was attributed to bridging effects of zirconia particles as well as transformation toughening.  相似文献   

2.
The aim of this investigation was to study the variability in compressive strength, fracture toughness and microhardness applying the well-known Weibull statistics and to be able to provide a wide spectrum of mechanical properties in Al2O3 whisker reinforced alumina toughened zirconia (ATZ) and zirconia toughened alumina (ZTA) nanocomposites for possible dental applications. Uniaxial compression tests at room temperature of samples 6.35 ± 0.03 mm in diameter and 12.50 ± 0.63 mm in length and Vickers hardness measurements on polished surfaces were carried out. The indentation fracture toughness (KIC) was derived from the average crack length. Weibull analysis was performed on the data. The ATZ2 (18.0 wt.% Al2O3 + 2.0 wt.%(w) + 80.0 wt.% ZrO2 (TZ-3Y)) nanocomposite reported the highest average compressive load of 1200 MPa, the highest value of characteristic strength, σo, of 1340 MPa with Weibull modulus of 3.25 and relatively high fracture toughness (4.7 ± 0.7 MPa m1/2), suggesting that with the wide range of mechanical properties obtained in our work, different dental applications could be offered without lead to premature failure.  相似文献   

3.
The effect of hot isostatic pressing (HIPing) on as-sintered α-Al2O3 ceramics for total hip arthroplasty (THA) was investigated. The sinterability of these powders and the minimum temperature required to obtain closed porosity have been determined by pressureless sintering in air at temperatures between 1280 and 1460 °C for 2 h. Temperatures of 1300 and 1325 °C and applied pressures of 150 MPa for 30 min were utilised in the HIP cycles. Densities >98% of the theoretical density (TD) have been obtained after HIPing, and the grain sizes previously obtained during pressureless sintering increased slightly during the HIP treatment. The microstructures before and after HIP treatments were observed by means of scanning electron microscopy (SEM). The fracture toughness was obtained by the indentation fracture technique using a Vickers hardness tester at a load of 10 N with a dwell time of 15 s for all cases. The ceramics obtained at the lowest HIP temperature (1300 °C) presented a grain size of 0.62 ± 0.04 μm, hardness of 20.5 ± 0.6 GPa, and fracture toughness of 4.8 ± 0.3 MPa m1/2. The reported values were higher than those obtained by other authors and were in concordance with international standards that could make these ceramics available as a replacement for metal-on-polyethylene in orthopaedic surgery.  相似文献   

4.
Alumina matrix composites containing 5 and 10 wt% of ZrO2 were sintered under 100 MPa pressure by spark plasma sintering process. Alumina powder with an average particle size of 600 nm and yttria-stabilized zirconia with 16 at% of Y2O3 and with a particle size of 40 nm were used as starting materials. The influence of ZrO2 content and sintering temperature on microstructures and mechanical properties of the composites were investigated. All samples could be fully densified at a temperature lower than 1400 °C. The microstructure analysis indicated that the alumina grains had no significant growth (alumina size controlled in submicron level 0.66-0.79 μm), indicating that the zirconia particles provided a hindering effect on the grain growth of alumina. Vickers hardness and fracture toughness of composites increased with increasing ZrO2 content, and the samples containing 10 wt% of ZrO2 had the highest Vickers hardness of 18 GPa (5 kg load) and fracture toughness of 5.1 MPa m1/2.  相似文献   

5.
Bulk WC-Al2O3 composites prepared by spark plasma sintering   总被引:1,自引:0,他引:1  
WC and WC-Al2O3 materials without metallic binder addition were densified by spark plasma sintering in the range of 1800-1900 °C. The densification behavior, phase constitution, microstructure and mechanical properties of pure WC and WC-Al2O3 composite were investigated. The addition of Al2O3 facilitates sintering and increases the fracture toughness of the composites to a certain extent. An interesting phenomenon is found that a proper content of Al2O3 additive helps to limit the formation of W2C phase in sintered WC materials. The pure WC specimen possesses a hardness (HV10) of 25.71 GPa, fracture toughness of 4.54 MPa·m1/2, and transverse fracture strength of 862 MPa, while those of WC-6.8 vol.% Al2O3 composites are 24.48 GPa, 6.01 MPa·m1/2, and 1245 MPa respectively. The higher fracture toughness and transverse fracture strength of WC-6.8 vol.% Al2O3 are thought to result from the reduction of W2C phase, the crack-bridging by Al2O3 particles and the local change in fracture mode from intergranular to transgranular.  相似文献   

6.
This paper presents the results of detailed studies carried out on the densification of TiB2 with CrB2 as sinter additive by hot pressing. The dense compacts were characterized by measurement of hardness, indentation fracture toughness, flexural strength, coefficient of thermal expansion and electrical resistivity. Oxidation characteristics were investigated between 600 °C and 1000 °C and isothermal oxidation kinetics at 850 °C. Phase identification and surface morphology analysis of hot pressed and oxidized samples were done using XRD and SEM. A high density of 96.61% Τ.D was obtained with the addition of 2.5% CrB2 by hot pressing at 1750 °C under 35 MPa pressure. Hardness values of composites with 2.5–10% CrB2 were close to 24 GPa and fracture toughness in the range of 3–5 MPa m1/2. Coefficient of thermal expansion of the composite with 10% CrB2 was measured in the range of 6.21–7.43 × 10−6/K from room temperature to 1000 °C. Electrical resistivity of TiB2 + 10%CrB2 was measured as 32.83, 75.97 and 120 μΩ cm at 25 °C, 500 °C and 900 °C, respectively. Observed nature of oxidation was parabolic for all composites. Formation of continuous and thick glassy film was observed with increased CrB2 content in the composite. TiO2 and CrBO3 phases were identified on the oxidized surface which are responsible for the improved oxidation resistance of this composite.  相似文献   

7.
The starting materials of Al2O3, TiO2, ZrO2 and CeO2 nanoparticles were agglomerated into sprayable feedstock powders and plasma sprayed to form nanostructured coatings. There were net structures and fused structures in plasma sprayed nanostructured Al2O3–13 wt.%TiO2 coatings. The net structures were derived from partially melted feedstock powders and the fused structures were derived from fully melted feedstock powders. The nanostructured Al2O3–13 wt.%TiO2 coatings possessed higher hardness, bonding strength and crack growth resistance than conventional Metco 130 coatings which were mainly composed of lamellar fused structures. The higher toughness and strength of nanostructured Al2O3–13 wt.%TiO2 coatings were mainly related to the obtained net structures.  相似文献   

8.
In the present work, the influence of the isothermal holding time on the physical (relative density and mass loss), chemical (α–β transformation and intergranular phase crystallization) and mechanical (hardness and fracture toughness) properties of Si3N4 ceramics with Al2O3 and CTR2O3 as additives has been studied. CTR2O3 is a natural rare earth oxide mixture, produced at DEMAR-FAENQUIL from the mineral xenotime, consisting mainly of Y2O3, Yb2O3, Er2O3 and Dy2O3. The increase in hardness and fracture toughness with increasing duration of isothermal sintering is discussed in regard of densification, α–β Si3N4 phase transformation and microstructure. The microstructural variations were decisive for the increase of fracture toughness, because larger grains (>4 μm) with higher aspect ratios (>6) developed during increased sinter periods, enhancing crack deflection and crack-bridging mechanism. In this way longer isothermal holding times contribute to the improvement of the physical and mechanical properties of silicon nitride based ceramics.  相似文献   

9.
The P2O5 + ZnO, ZrO2 + TiO2, B2O3 and a low-melting-point CaO–B2O3–SiO2 glass (LG) are selected as the sintering additives, and the effect of their additions on the microwave dielectric properties, mechanical properties and microstructures of CaO–B2O3–SiO2 system glass ceramics is investigated. It is found that the sintering temperature of pure CBS glass is higher than 950 °C and the sintering range is about 10 °C. With the above additions, the glass ceramics can be sintered between 820 °C and 900 °C. The dielectric properties of the samples are dependent on the additions, densification and microstructures of sintered bodies. The major phases of this material are CaSiO3, CaB2O4 and SiO2. With 10 wt% B2O3 and LG glass additions, the CBS glass ceramics have better mechanical properties, but worse dielectric properties. The r values of 6.51 and 7.07, the tan δ values of 0.0029 and 0.0019 at 10 GHz, are obtained for the CBS glass ceramics sintered at 860 °C with 2 wt% P2O5 + 2 wt% ZnO and 2 wt% ZrO2 + 2 wt% TiO2 additions, respectively. This material is suitable to be used as the LTCC material for the application in wireless communications.  相似文献   

10.
WC based composites with 5, 10 and 20 vol.% Fe3Al binder were consolidated via pulsed electric current sintering (PECS) in the solid state for 4 min at 1200 °C under a pressure of 90 MPa. Microstructural analysis revealed a homogeneous Fe3Al binder distribution, ultrafine WC grains and dispersed Al2O3 particle clusters. The WC-5 vol.% Fe3Al composite combines an excellent Vickers hardness of 25.6 GPa with very high Young’s modulus of 693 GPa, a fracture toughness of 7.6 MPa m1/2 and flexural strength of 1000 MPa. With increasing Fe3Al binder content, the hardness and stiffness decreased linearly to 19.9 and 539 GPa, respectively with increasing binder content up to 20 vol.%, while the fracture toughness and flexural strength were hardly influenced by the binder content. Compared to WC–Co cemented carbides processed under exactly the same conditions, the WC–Fe3Al composites exhibit a substantially higher hardness and Young’s modulus.  相似文献   

11.
Al2O3-Ce0.5Zr0.5O2 catalytic powders were synthesized by the coprecipitation (ACZ-C) and mechanical mixing (ACZ-M) methods, respectively. As-synthesized powders were characterized by XRD, Raman spectroscopy, surface area and thermogravimetric analyses. It was found that the mixing extent of Al3+ ions affected the phase development, texture and oxygen storage capacity (OSC) of the Ce0.5Zr0.5O2 powder. Single phase of ACZ-C could be maintained without phase separation and inhibit α-Al2O3 formation up to 1200 °C. The specific surface area value of ACZ-C (81.5 m2/g) was larger than that of ACZ-M (62.1 m2/g) and Ce0.5Zr0.5O2 (17.1 m2/g) powders, which were calcined at 1000 °C. In comparison with ACZ-C and Al2O3, which were calcined at high temperature (900–1200 °C), it was found that the degradation rate of specific surface area of ACZ-C was lower than that of Al2O3. ACZ-C sample showed a higher thermal stability to resist phase separation and crystallite growth, which enhanced the oxygen storage capacity property for Ce0.5Zr0.5O2 powders.  相似文献   

12.
Al2O3-reinfored tungsten alloys were fabricated by powder metallurgy method and hot swaging technology. The investigation was made on the microstructure, relative density, nano-hardness and fracture toughness (KIC) of the sintered and swaged Al2O3/W alloys. The swaging process and addition of Al2O3 are beneficial to comprehensive properties of the sintered and swaged alloys. After swaging, the Al2O3/W alloys can achieve the full density. According to the nano-indentation test and three-point bend test, the swaged W-0.25 wt% Al2O3 alloy possesses the highest hardness of 7.02 GPa, the greatest modulus of 435.09 GPa and the maximum fracture toughness of 21 MPa·m1/2. The observation of fracture morphology shows that the recrystallization behavior and grain growth occur above 1400 °C in the swaged pure W alloy, which leads to recrystallization brittleness. At the same time, the microstructure of the swaged W-0.25 wt% Al2O3 alloy does not change apparently.  相似文献   

13.
Nanocrystalline (nc) Cu materials with Al2O3 dispersoid (Cu-4 vol. % Al2O3) were successfully produced by a simple cryo-milling at 210 K with a mixture of Cu2O, Al, and Cu ingredient powders, followed by hot pressing at 1123 K. The results of microstructural analysis showed that the hot pressed material was comprised of a mixture of Cu matrix (25.1 nm) with a homogeneous size distribution of the Al2O3 dispersoid (4 nm in radius). Grain size of Cu was measured by XRD (Scherrer's formula); dispersoid size of Al2O3 was confirmed by STEM-EDS (Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy) and TEM (Transmission Electron Microscopy). Result of micro hardness tests indicated that the hot pressed materials have a significantly high hardness (265 ± 8, VHN; 2.6 GPa, SI units) at room temperature. Two strengthening mechanisms are considered for high hardness: strengthening by grain refinement and dispersion hardening. An estimate of the individual strengthening effect to total strength of the material at room temperature, based on the Hall-Petch and Orowan equations, is presented.  相似文献   

14.
The preparation of nanostructured (ZrO2–5 wt.% Y2O3)–20 wt.% Al2O3 coatings by atmospheric plasma spraying of commercially available micron-scale powders is reported. Materials were prepared by means of a standard spraying technique and by using an improved technique that allows for the quenching of the material using liquid nitrogen-cooled substrates. Quenching leads to the controlled formation of metastable phases. The influence of liquid nitrogen cooling on the formation of the metastable phases was studied by X-ray diffraction under a grazing incidence angle of 1°. A significant increase in the amount of the metastable zirconia phase and a more homogeneous composition along the thickness were found compared to the regularly sprayed coatings. All materials were subjected to a thermal treatment for 1 h at 1400 °C to study the evolution of stable phases.  相似文献   

15.
In this study, La2O3 was investigated as an additive to TiC/W composites. The composites were prepared by vacuum hot pressing, and the microstructure and mechanical properties of the composites were investigated. Experimental results show that the grain size of the TiC/W composites is reduced by TiC particles. When 0.5 wt.% La2O3 is added to the composites, the grain size is reduced further. According to TEM analysis, La2O3 can alleviate the aggregation of TiC particles. With La2O3 addition, the relative density of the TiC/W composites can be improved from 95.1% to 96.5%. The hardness and elastic modulus of the TiC/W + 0.5 wt.% La2O3 composite are little improved, but the flexural strength and the fracture toughness increase to 796 MPa and 10.07 MPa·m1/2 respectively, which are higher than those of the TiC/W composites.  相似文献   

16.
The microwave dielectric properties and the microstructures of ZnO-doped La(Co1/2Ti1/2)O3 ceramics prepared by conventional solid-state route have been studied. Doped with ZnO (up to 0.75 wt%) can effectively promote the densification of La(Co1/2Ti1/2)O3 ceramics with low sintering temperature. At 1320 °C, La(Co1/2Ti1/2)O3 ceramics with 0.75 wt% ZnO addition possesses a dielectric constant (r) of 30.2, a Q × f value of 73,000 GHz (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −35 ppm/°C.  相似文献   

17.
The aim of the present research work was to investigate the effect on the properties such as density, surface roughness, microhardness, fracture toughness and microstructure added with MgO and ZrO2 in an alumina matrix. The magnesia-zirconia toughened alumina spark plasma sintered nanocomposite samples were developed successfully and found the suppressing grain growth and crack free microstructure. No damage was found due to thermal shock up to 1350 °C. The amount of ZrO2was added with 5 vol%, 10 vol% and 15 vol%, while MgO added with 0.5 vol%, 1 vol% and 2 vol% in an aluminamatrix. Each composition was weighed and mixed together. After that, the powders were pressed under the rapid heating at the sintering temperature of 1250 °C, 1300 °C and 1350 °C and for 5 min holding time under pressure of 60 MPa simultaneously. The optimum properties were found with the compositions of 10 vol% of ZrO2, 1 vol% of MgO in the Al2O3 matrix. It showed highest relative density (99.68%), minimum surface roughness (1.123 μm), highest microhardness (19.46 GPa) and minimum average grain size (0.595 μm). The highest fracture toughness was found to be 6.7 MPa.m1/2 the added with 15 vol% of ZrO2,1 vol% of MgO in the Al2O3 matrix for the holding time 5 min and a sintering temperature of 1300 °C. The X-ray diffraction analyses indicate the presence of major phases were ZrO2, α-Al2O3, MgO, magnesia phase with minor peaks of the secondary phase MgAl2O4. This was found due to chemical reactions between the composite constituents present in the matrix during the sintering. Uniform microstructure was observed using a field emission scanning electron microscope and obtained the sub-micron level of grain size without any significant increases of grain size. The developed compositehas high hardness and toughness to make it more suitable for applications such as ballistic armor and thermal barrier coating.  相似文献   

18.
Al2O3 is a major reinforcement in aluminum-based composites, which have been developing rapidly in recent years. The aim of this paper is to investigate the effect of alumina particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composite. The average particle size of alumina were 3, 12 and 48 μm. Sintering temperature and time were in the range of 500–600 °C for 30–90 min. A correlation is established between the microstructure and mechanical properties. The investigated properties include density, hardness, microstructure, yield strength, compressive strength and elongation to fracture. It has been concluded that as the particle size of alumina is reduced, the density is increased followed by a fall in density. In addition, at low particle size, the hardness and yield strength and compressive strength and elongation to fracture were higher, compared to coarse particles size of alumina. The variations in properties of Al–Al2O3 composite are dependent on both sintering temperature and time. Prolonged sintering times had an adverse effect on the strength of the composite.  相似文献   

19.
Ceramic insulation coatings were produced on Cu/MgB2 wires, which were fabricated by Hyper Tech Research Inc., using Continuous Tube Forming and Filling (CTFF) process, from the solution of Zr, and Y based organometalic compounds, solvent and chelating agent using reel-to-reel sol–gel technique for MgB2 coils. Y2O3–ZrO2/Cu/MgB2 wires were annealed at 700 °C for 30 min with 5.8 °C/min heating rate under 4% H2–Ar gas flow. Residual stresses were examined for Cu/MgB2 wire and YSZ coatings with varying thicknesses. It was observed that displacement values are independent from YSZ thicknesses and the maximum effective stress value is in the Cu region. The surface morphologies and microstructure of samples were characterized using SEM. SEM micrographs of the insulation coatings revealed cracks, pinholes and mosaic structure.  相似文献   

20.
Initiation of localized corrosion upon high strength aluminum alloys is often associated with cathodic intermetallic particles within the alloy. Electrochemical measurements and metallurgical characterization have been made to clarify and quantify the physical properties of Al7Cu2Fe particles in AA7075-T651. Prior studies regarding either the stereology or electrochemical properties of Al7Cu2Fe are scarce. Quantitative microscopy revealed a significant population of Al7Cu2Fe in the alloy; comprising up to 65% of the constituent particle population and typically at a size of 1.7 ± 1.0 μm. It was determined that Al7Cu2Fe may serve as a local cathode in the evolution of localized corrosion of AA7075-T651 and is capable of sustaining oxygen reduction reactions at rates of several hundreds of μA/cm2 over a range of potentials typical of the open circuit potential (OCP) of AA7075-T651 in NaCl solution of various concentrations and pH. The presence of Al7Cu2Fe leads to the development of pitting at the particle–matrix interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号