首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The first 1.55 /spl mu/m room-temperature continuous-wave (CW) operation of GaAs-based laser diodes utilising GaInNAsSb/GaNAs double quantum well active regions grown by molecular beam epitaxy is reported. In electrically-pumped CW operation the narrow ridge waveguide devices have a room temperature lasing wavelength of 1550 nm near threshold, increasing to 1553 nm at thermal rollover. The CW threshold current was 132 mA for a 3/spl times/589 /spl mu/m device, with a characteristic temperature of 83 K, measured in pulsed mode between 20 and 70/spl deg/C.  相似文献   

2.
High-power 2.3 /spl mu/m In(Al)GaAsSb/GaSb type-I double quantum-well diode laser arrays have been fabricated and characterised. Linear laser arrays with 19 100 /spl mu/m-wide elements on a 1 cm-long bar generated 10 W in continuous-wave (CW) mode and 18.5 W in quasi-CW mode (30 /spl mu/s/300 Hz) at a heatsink temperature of 18/spl deg/C.  相似文献   

3.
Continuous wave (CW) operation at room temperature of electrically pumped InGaAlAs/InP vertical-cavity surface-emitting lasers (VCSELs) at emission wavelengths as high as 2.3 /spl mu/m is demonstrated for the first time. Devices with 15 /spl mu/m active region diameter show a maximum output power of 0.75 mW at 20/spl deg/C and a maximum CW operating temperature of 45/spl deg/C.  相似文献   

4.
650-nm AlGaInP-AlGaAs-based oxide-confined VCSELs are investigated in dependence on the current aperture size. VCSELs with small aperture (a=5 /spl mu/m) have a maximum continuous-wave (CW) output power of about 1 mW at room temperature. They reach higher operating temperatures (T/sub max/=55/spl deg/C), have narrower beam profiles, less transverse modes, and a higher side mode suppression compared to large aperture VCSELs (a>13 /spl mu/m). The latter devices emit a CW-output power P=3 mW at 20/spl deg/C. Reliability tests of 655-nm devices show at 20/spl deg/C an output power of P/spl ap/0.4 mW over more than 1000 h and at 40/spl deg/C P/spl ap/0.1 mW over 500 h.  相似文献   

5.
P-type doping is used to demonstrate high-To, low-threshold 1-3 /spl mu/m InAs quantum-dot lasers. A 5-/spl mu/m-wide oxide confined stripe laser with a 700-/spl mu/m-long cavity exhibits a pulsed T/sub 0/ = 213 K (196 K CW) from 0/spl deg/C to 80/spl deg/C. At room temperature, the devices have a CW threshold current of /spl sim/4.4 mA with an output power over 15 mW. The threshold at 100/spl deg/C is 8.4 mA with an output power over 8 mW.  相似文献   

6.
High-power 2.3-/spl mu/m In(Al)GaAsSb-GaSb type-I double quantum-well diode laser arrays were fabricated and characterized. Linear laser arrays with 19 100-/spl mu/m-wide elements on a 1-cm-long bar generated 10 W in continuous-wave (CW) mode and 18.5 W in quasi-CW mode (30 /spl mu/s/300 Hz) at a heatsink temperature of 18/spl deg/C. Array power conversion efficiency peaked at 30 A and was about 9%. Device internal efficiency was about 50%. Individual laser differential gain with respect to current was about twice as high as in InP-based laser heterostructures, demonstrating the potential of GaSb-based material system for high-power CW room-temperature laser diode arrays.  相似文献   

7.
We report on a 1.5-/spl mu/m vertical-cavity laser that utilizes one GaInAsP-InP and one Si-SiO/sub 2/ mirror in combination with a strain-compensated GaInAsP quantum-well active layer. Pulsed lasing operation was achieved in a temperature range from -160 to +43/spl deg/C. The lasers exhibit 30-mA pulsed threshold current at room temperature. CW operation was obtained up to -25/spl deg/C.  相似文献   

8.
We introduced ion-beam assisted deposition in order to improve the quality of Al/sub 2/O/sub 3/ and SiO/sub 2/, which were used as part of the mirrors of 1.3-/spl mu/m GaInAsP-InP vertical-cavity surface-emitting lasers (VCSELs). The refractive index of Al/sub 2/O/sub 3/ was improved to 1.63 from 1.56 and the one of SiO/sub 2/ increased to 1.47 from 1.45. Low-threshold room-temperature continuous-wave (CW) operation of 1.3-/spl mu/m VCSEL with the improved mirrors was demonstrated. The threshold current was 2.4 mA at 20/spl deg/C. The CW operating temperature was raised to 36/spl deg/C, which is a record high temperature for 1.3-/spl mu/m VCSEL.  相似文献   

9.
We report continuous-wave (CW) operation of a 4.3-/spl mu/m quantum-cascade laser from 80 K to 313 K. For a high-reflectivity-coated 11-/spl mu/m-wide and 4-mm-long laser, CW output powers of 1.34 W at 80 K and 26 mW at 313 K are achieved. At 298 K, the CW threshold current density of 1.5 kA/cm/sup 2/ is observed with a CW output power of 166 mW and maximum wall-plug efficiency of 1.47%. The CW emission wavelength varies from 4.15 /spl mu/m at 80 K to 4.34 /spl mu/m at 298 K, corresponding to a temperature-tuning rate of 0.87 nm/K. The beam full-width at half-maximum values for the parallel and the perpendicular far-field patterns are 26/spl deg/ and 49/spl deg/ in CW mode, respectively.  相似文献   

10.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

11.
The first InGaAsN VCSELs grown by MOCVD with CW lasing wavelength longer than 1.3 /spl mu/m are reported. The devices were of conventional p-i-n structure with doped DBR mirrors. CW lasing up to 65/spl deg/C was observed, with a maximum output power at room temperature of 0.8 mW for multimode devices and nearly 0.3 mW for single-mode devices.  相似文献   

12.
Yan  C. Ning  Y. Qin  L. Liu  Y. Zhao  L. Wang  Q. Jin  Z. Sun  Y. Tao  G. Chu  G. Wang  C. Wang  L. Jiang  H. 《Electronics letters》2004,40(14):872-874
Fabrication and performance of a high-power bottom-emitting InGaAs/GaAsP vertical cavity surface emitting laser with 430 /spl mu/m diameter are described. The device realises the maximum room temperature CW output power 1.52 W at 987.6 nm with FWHM 0.8 nm. The far-field divergence angle is below 20/spl deg/. Reliability test shows at 70/spl deg/C an output power 0.35 W over 500 h.  相似文献   

13.
A continuous-wave hybrid AlGaInAs-silicon evanescent laser   总被引:1,自引:0,他引:1  
We report a novel laser architecture, the hybrid silicon evanescent laser (SEL), that utilizes offset AlGaInAs quantum wells (QWs) bonded to a silicon waveguide. The silicon waveguide is fabricated on a silicon-on-insulator wafer using a complimentary metal-oxide-semiconductor-compatible process, and is subsequently bonded with the AlGaInAs QW structure using low temperature O/sub 2/ plasma-assisted wafer bonding. The optical mode in the SEL is predominantly confined in the passive silicon waveguide and evanescently couples into the III-V active region providing optical gain. The SEL lases continuous wave (CW) at 1568 nm with a threshold of 23 mW. The maximum temperature for CW operation is 60/spl deg/C. The maximum single-sided fiber-coupled CW output power at room temperature is 4.5 mW.  相似文献   

14.
We report continuous-wave (CW) operation of quantum-cascade lasers (/spl lambda/=6 /spl mu/m) up to a temperature of 313 K (40/spl deg/C). The maximum CW optical output powers range from 212 mW at 288 K to 22 mW at 313 K and are achieved with threshold current densities of 2.21 and 3.11 kA/cm/sup 2/, respectively, for a high-reflectivity-coated 12-/spl mu/m-wide and 2-mm-long laser. At room temperature (298 K), the power output is 145 mW at 0.87 A, corresponding to a power conversion efficiency of 1.68%. The maximum CW operating temperature of double-channel ridge waveguide lasers mounted epilayer-up on copper heatsinks is analyzed in terms of the ridge width, which is varied between 12 and 40 /spl mu/m. A clear trend of improved performance is observed as the ridge narrows.  相似文献   

15.
Continuous-wave (CW) operation of GaInNAs laser diodes in the 1.4 /spl mu/m range has been realised for the first time. A GaInNAs double quantum well separate confinement heterostructure was grown by solid source molecular beam epitaxy. Threshold currents as low as 66 mA and external efficiencies as high as 0.29 W/A could be demonstrated in CW operation. Lasing was observed up to 150/spl deg/C and a characteristic temperature T/sub 0/ of 111K was demonstrated. The emission wavelength at room temperature was centred at 1417 nm.  相似文献   

16.
All-epitaxial InAlGaAs-InP vertical-cavity surface-emitting lasers grown by metal-organic chemical vapor deposition were successfully demonstrated in the wavelength ranging from 1.3 to 1.6 /spl mu/m. The devices showed the high performances such as single-mode output power of higher than 1.1mW, sidemode suppression ratio of 37 dB, divergence angle of 9/spl deg/, and CW operation of temperature up to 80 /spl deg/C. We achieved the modulation bandwidth exceeding 2.5 Gb/s and power penalty free transmission over 30 km.  相似文献   

17.
Buried heterostructure quantum cascade lasers emitting at 5.64 /spl mu/m are presented. Continuous-wave (CW) operation has been achieved at -30/spl deg/C for junction down mounted devices with both facets coated. A 750 /spl mu/m-long laser exhibited 3 mW of CW power with a threshold current density of 5.4 kA/cm/sup 2/.  相似文献   

18.
High-temperature high-power continuous-wave (CW) operation of high-reflectivity-coated 12-/spl mu/m-wide quantum-cascade lasers emitting at /spl lambda/ = 6 /spl mu/m with a thick electroplated Au top contact layer is reported for different cavity lengths. For a 3-mm-long laser, the CW optical output powers of 381 mW at 293 K and 22 mW at maximum operating temperature of 333 K (60/spl deg/C) are achieved with threshold current densities of 1.93 and 3.09 kA/cm/sup 2/, respectively. At 298 K, the same cavity gives a maximum wall plug efficiency of 3.17% at 1.07 A. An even higher CW optical output power of 424 mW at 293 K is obtained for a 4-mm-long laser and the device also operates up to 332 K with an output power of 14 mW. Thermal resistance is also analyzed at threshold as a function of cavity length.  相似文献   

19.
A report is presented on room-temperature (RT) continuous-wave (CW) laser emission at 1.55 /spl mu/m of an all InP-based electrically-pumped vertical external-cavity surface-emitting laser (EP-VECSEL). Threshold currents of 1.4 kA/cm/sup 2/ and output powers of up to 0.3 mW were measured under CW operation at RT. A maximum output power of 2.7 mW has been obtained in quasi-CW operation at a heatsink temperature of 10.5/spl deg/C. This first result demonstrates that EP-VECSELs are a potential candidate for the realisation of compact vertical-cavity emitting sources.  相似文献   

20.
Operation of type-II interband cascade lasers in the 4.3-4.7-/spl mu/m wavelength region has been demonstrated at temperatures up to 240 K in pulsed mode. These lasers fabricated with 150-/spl mu/m-wide mesa stripes operated in continuous-wave (CW) mode up to a maximum temperature of 110 K, with an output power exceeding 30 mW/f and a threshold current density of about 41 A/cm/sup 2/ at 90 K. The maximum CW operation temperature of 110 K is largely limited by the high specific thermal resistance of the 150-/spl mu/m-wide broad area lasers. A 20-/spl mu/m-wide mesa stripe laser was able to operate in CW mode at higher temperatures up to 125 K as a result of the reduced specific thermal resistance of a smaller device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号