首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The quadratic eigenvalue problem (QEP) (λ2M+λG+K)x=0, with MT=M being positive definite, KT=K being negative definite and GT=?G, is associated with gyroscopic systems. In Guo (2004), a cyclic-reduction-based solvent (CRS) method was proposed to compute all eigenvalues of the above mentioned QEP. Firstly, the problem is converted to find a suitable solvent of the quadratic matrix equation (QME) MX2+GX+K=0. Then using a Cayley transformation and a proper substitution, the QME is transformed into the nonlinear matrix equation (NME) Z+ATZ?1A=Q with A=M+K+G and Q=2(M?K). The problem finally can be solved by applying the CR method to obtain the maximal symmetric positive definite solution of the NME as long as the QEP has no eigenvalues on the imaginary axis or for some cases where the QEP has eigenvalues on the imaginary axis. However, when all eigenvalues of the QEP are far away from or near the origin, the Cayley transformation seems not to be the best one and the convergence rate of the CRS method proposed in Guo (2004) might be further improved. In this paper, inspired by using a doubling algorithm to solve the QME, we use a Möbius transformation instead of the Cayley transformation to present an accelerated CRS (ACRS) method for solving the QEP of gyroscopic systems. In addition, we discuss the selection strategies of optimal parameter for the ACRS method. Numerical results demonstrate the efficiency of our method.  相似文献   

6.
7.
8.
9.
10.
11.
12.
In this paper, we prove the existence of multiple solutions for the following Schrödinger–Kirchhoff system involving the fractional p-Laplacian
M?R2N|u(x)?u(y)|p|x?y|N+psdxdy(?Δ)psu+V(x)|u|p?2u=Fu(x,u,v)+λg(x),xRN,M?R2N|v(x)?v(y)|p|x?y|N+psdxdy(?Δ)psu+V(x)|v|p?2v=Fv(x,u,v)+λh(x),xRN,u(x)0,v(x)0,as|x|+,
where (?Δ)ps denotes the fractional p-Laplacian of order s(0,1), 2p<, ps<N, Fu=?F?u, Fv=?F?v, V(x) is allowed to be sign-changing, λ>0 and g,h:RNR is a perturbation. Under some certain assumptions on f, we obtain the existence of multiple solutions for this problem via Ekeland’s variational principle and mountain pass theorem.  相似文献   

13.
We, first, consider the quantum version of the nonlinear Schrödinger equation
iqDq|tu(t,x)+Δu(qt,x)=λ|u(qt,x)|p,t>0,xRN,
where 0<q<1, iq is the principal value of iq, Dq|t is the q-derivative with respect to t, Δ is the Laplacian operator in RN, λ??{0}, p>1, and u(t,x) is a complex-valued function. Sufficient conditions for the nonexistence of global weak solution to the considered equation are obtained under suitable initial data. Next, we study the system of nonlinear coupled equations
iqDq|tu(t,x)+Δu(qt,x)=λ|v(qt,x)|p,t>0,xRN,
iqDq|tv(t,x)+Δv(qt,x)=λ|u(qt,x)|m,t>0,xRN,  相似文献   

14.
15.
The construction of finite element approximations in H(div,Ω) usually requires the Piola transformation to map vector polynomials from a master element to vector fields in the elements of a partition of the region Ω. It is known that degradation may occur in convergence order if non affine geometric mappings are used. On this point, we revisit a general procedure for the improvement of two-dimensional flux approximations discussed in a recent paper of this journal (Comput. Math. Appl. 74 (2017) 3283–3295). The starting point is an approximation scheme, which is known to provide L2-errors with accuracy of order k+1 for sufficiently smooth flux functions, and of order r+1 for flux divergence. An example is RTk spaces on quadrilateral meshes, where r=k or k?1 if linear or bilinear geometric isomorphisms are applied. Furthermore, the original space is required to be expressed by a factorization in terms of edge and internal shape flux functions. The goal is to define a hierarchy of enriched flux approximations to reach arbitrary higher orders of divergence accuracy r+n+1 as desired, for any n1. The enriched versions are defined by adding higher degree internal shape functions of the original family of spaces at level k+n, while keeping the original border fluxes at level k. The case n=1 has been discussed in the mentioned publication for two particular examples. General stronger enrichment n>1 shall be analyzed and applied to Darcy’s flow simulations, the global condensed systems to be solved having same dimension and structure of the original scheme.  相似文献   

16.
17.
18.
We consider the prey-taxis system:
ut=d1Δu?χ??(u?v)+u(a?μu)+buf(v),xΩ,t>0,vt=d2Δv+v(c?βv)?uf(v),xΩ,t>0
in a smoothly bounded domain Ω?Rn, with zero-flux boundary condition, where a,d1,d2,χ,μ,b,c are positive constants and β is a non-negative constant. We first investigate the global existence and local boundedness of solution for the case β=0. Moreover, when β>0, we show that the solution exists globally and is uniformly bounded provided μ is large enough.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号