首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.  相似文献   

2.
A continuing challenge in cartilage tissue engineering for cartilage regeneration is the creation of a suitable synthetic microenvironment for chondrocytes and tissue regeneration. The aim of this study was to develop a highly tunable hybrid scaffold based on a silk fibroin matrix (SM) and a hyaluronic acid (HA) hydrogel. Human articular chondrocytes were embedded in a porous 3-dimensional SM, before infiltration with tyramine modified HA hydrogel. Scaffolds were cultured in chondropermissive medium with and without TGF-β1. Cell viability and cell distribution were assessed using CellTiter-Blue assay and Live/Dead staining. Chondrogenic marker expression was detected using qPCR. Biosynthesis of matrix compounds was analyzed by dimethylmethylene blue assay and immuno-histology. Differences in biomaterial stiffness and stress relaxation were characterized using a one-step unconfined compression test. Cell morphology was investigated by scanning electron microscopy. Hybrid scaffold revealed superior chondro-inductive and biomechanical properties compared to sole SM. The presence of HA and TGF-β1 increased chondrogenic marker gene expression and matrix deposition. Hybrid scaffolds offer cytocompatible and highly tunable properties as cell-carrier systems, as well as favorable biomechanical properties.  相似文献   

3.
Osteoarthritis (OA) is a whole joint disease characterized by an important remodeling of the osteochondral junction. It includes cartilage mineralization due to chondrocyte hypertrophic differentiation and bone sclerosis. Here, we investigated whether gremlin-1 (Grem-1) and its BMP partners could be involved in the remodeling events of the osteochondral junction in OA. We found that Grem-1, BMP-2, and BMP-4 immunostaining was detected in chondrocytes from the deep layer of cartilage and in subchondral bone of knee OA patients, and was positively correlated with cartilage damage. ELISA assays showed that bone released more Grem-1 and BMP-4 than cartilage, which released more BMP-2. In vitro experiments evidenced that compression stimulated the expression and the release of Grem-1 and BMP-4 by osteoblasts. Grem-1 was also overexpressed during the prehypertrophic to hypertrophic differentiation of murine articular chondrocytes. Recombinant Grem-1 stimulated Mmp-3 and Mmp-13 expression in murine chondrocytes and osteoblasts, whereas recombinant BMP-4 stimulated the expression of genes associated with angiogenesis (Angptl4 and osteoclastogenesis (Rankl and Ccl2). In conclusion, Grem-1 and BMP-4, whose expression at the osteochondral junction increased with OA progression, may favor the pathological remodeling of the osteochondral junction by inducing a catabolic and tissue remodeling program in hypertrophic chondrocytes and osteoblasts.  相似文献   

4.
Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs) from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β). Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y–box (SRY-box) containing gene 9 (SOX9), type 2α1 collagen (Col2α1), cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5). Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways.  相似文献   

5.
6.
The replacement of damaged or degenerated articular cartilage tissue remains a challenge, as this non-vascularized tissue has a very limited self-healing capacity. Therefore, tissue engineering (TE) of cartilage is a promising treatment option. Although significant progress has been made in recent years, there is still a lack of scaffolds that ensure the formation of functional cartilage tissue while meeting the mechanical requirements for chondrogenic TE. In this article, we report the application of flock technology, a common process in the modern textile industry, to produce flock scaffolds made of chitosan (a biodegradable and biocompatible biopolymer) for chondrogenic TE. By combining an alginate hydrogel with a chitosan flock scaffold (CFS+ALG), a fiber-reinforced hydrogel with anisotropic properties was developed to support chondrogenic differentiation of embedded human chondrocytes. Pure alginate hydrogels (ALG) and pure chitosan flock scaffolds (CFS) were studied as controls. Morphology of primary human chondrocytes analyzed by cLSM and SEM showed a round, chondrogenic phenotype in CFS+ALG and ALG after 21 days of differentiation, whereas chondrocytes on CFS formed spheroids. The compressive strength of CFS+ALG was higher than the compressive strength of ALG and CFS alone. Chondrocytes embedded in CFS+ALG showed gene expression of chondrogenic markers (COL II, COMP, ACAN), the highest collagen II/I ratio, and production of the typical extracellular matrix such as sGAG and collagen II. The combination of alginate hydrogel with chitosan flock scaffolds resulted in a scaffold with anisotropic structure, good mechanical properties, elasticity, and porosity that supported chondrogenic differentiation of inserted human chondrocytes and expression of chondrogenic markers and typical extracellular matrix.  相似文献   

7.
Endogenous bone marrow-derived mesenchymal stem cells are mobilized to peripheral blood and injured tissues in response to changes in the expression of various growth factors and cytokines in the injured tissues, including substance P (SP), transforming growth factor-beta (TGF-β), and stromal cell-derived factor-1 (SDF-1). SP, TGF-β, and SDF-1 are all known to induce the migration of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it is not yet clear how these stimuli influence or interact with each other during BM-MSC mobilization. This study used mouse bone marrow-derived mesenchymal stem cell-like ST2 cells and human BM-MSCs to evaluate whether SP, TGF-β, and SDF-1 mutually regulate their respective effects on the mobilization of BM-MSCs. SP pretreatment of ST2 and BM-MSCs impaired their response to TGF-β while the introduction of SP receptor antagonist restored the mobilization of ST2 and BM-MSCs in response to TGF-β. TGF-β pretreatment did not affect the migration of ST2 and BM-MSCs in response to SP, but downregulated their migration in response to SDF-1. SP pretreatment modulated the activation of TGF-β noncanonical pathways in ST2 cells and BM-MSCs, but not canonical pathways. These results suggest that the migration of mesenchymal stem cells is regulated by complex functional interactions between SP, TGF-β, and SDF-1. Thus, understanding the complex functional interactions of these chemotactic stimuli would contribute to ensuring the development of safe and effective combination treatments for the mobilization of BM-MSCs.  相似文献   

8.
Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.  相似文献   

9.
Tissue engineering strategies promote bone regeneration for large bone defects by stimulating the osteogenesis route via intramembranous ossification in engineered grafts, which upon implantation are frequently constrained by insufficient integration and functional anastomosis of vasculature from the host tissue. In this study, we developed a hybrid biomaterial incorporating decellularized cartilage extracellular matrix (CD-ECM) as a template and silk fibroin (SF) as a carrier to assess the bone regeneration capacity of bone marrow-derived mesenchymal stem cells (hBMSC’s) via the endochondral ossification (ECO) route. hBMSC’s were primed two weeks for chondrogenesis, followed by six weeks for hypertrophy onto hybrid CD-ECM/SF or SF alone scaffolds and evaluated for the mineralized matrix formation in vitro. Calcium deposition biochemically determined increased significantly from 4-8 weeks in both SF and CD-ECM/SF constructs, and retention of sGAG’s were observed only in CD-ECM/SF constructs. SEM/EDX revealed calcium and phosphate crystal localization by hBMSC’s under all conditions. Compressive modulus reached a maximum of 40 KPa after eight weeks of hypertrophic induction. μCT scanning at eight weeks indicated a cloud of denser minerals in groups after hypertrophic induction in CD-ECM/SF constructs than SF constructs. Gene expression by RT-qPCR revealed that hBMSC’s expressed hypertrophic markers VEGF, COL10, RUNX2, but the absence of early hypertrophic marker ChM1 and later hypertrophic marker TSBS1 and the presence of osteogenic markers ALPL, IBSP, OSX under all conditions. Our data indicate a new method to prime hBMSC’S into the late hypertrophic stage in vitro in mechanically stable constructs for ECO-mediated bone tissue regeneration.  相似文献   

10.
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3′ untranslated region (3′-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.  相似文献   

11.
Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton’s jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA.  相似文献   

12.
Mesenchymal stem cells (MSCs) are known to have the potential for articular cartilage regeneration, and are suggested for the treatment of osteoarthritis (OA). Here, we investigated whether intra-articular injection of xenogeneic human adipose-derived mesenchymal progenitor cells (haMPCs) promoted articular cartilage repair in rabbit OA model and engrafted into rabbit articular cartilage. The haMPCs were cultured in vitro, and phenotypes and differentiation characteristics of cells were evaluated. OA was induced surgically by anterior cruciate ligament transection (ACLT) and medical meniscectomy of knee joints. At six weeks following surgery, hyaluronic acid (HA) or haMPCs was injected into the knee joints, the contralateral knee served as normal control. All animals were sacrificed at the 16th week post-surgery. Assessments were carried out by macroscopic examination, hematoxylin/eosin (HE) and Safranin-O/Fast green stainings and immunohistochemistry. The data showed that haMPC treatment promoted cartilage repair. Signals of human mitochondrial can be directly detected in haMPC treated cartilage. The haMPCs expressed human leukocyte antigen I (HLA-I) but not HLA-II-DR in vivo. These results suggest that intra-articular injection of haMPCs promotes regeneration of articular cartilage in rabbit OA model, and support the notion that MPCs are transplantable between HLA-incompatible individuals.  相似文献   

13.
Background: Several pharmacological therapeutic approaches have been proposed to manage osteoarthritis (OA), including intra-articular (IA) injections. Although the discovery of clodronate, a bisphosphonate, dates back to the 1960s and the effects of its IA administration have been investigated for decades in animal models, mechanisms of action of this drug are not quite clear, particularly in OA. This scoping review is an overview of the biological as well as the clinical role of clodronic acid in OA. Method: A scoping review based on the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) model was performed to characterize the mechanisms of action of IA clodronate in OA and to evaluate its efficacy from a clinical point of view. Results: Several effects of clodronate have been observed in animal models of OA, including depletion of synovial lining cells that results in reduced production of chemokines (IL-1, TNF- α), growth factors (TGF-β, BMP 2/4), and metalloproteases (MMP 2/3/9); prevention of cartilage damage, synovial hyperplasia, and proteoglycans loss; reduction in joint inflammation, joint swelling, and osteophyte formation. From a clinical perspective, patients with knee OA treated with IA clodronate experienced improvements in pain and joint mobility. Conclusion: Clodronate appears to have different mechanisms of action interfering with the pathogenic processes contributing to OA development and progression. This intervention demonstrated positive effects for patients affected by knee OA.  相似文献   

14.
Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) have been studied several years for their immunomodulatory effect through the paracrine mechanism and cytokine secretion. In combination with endothelial progenitor cells (EPCs), MSCs have great therapeutical potential for the repair of endothelium and wound healing. However, little is known about the cytokine profile of rabbit AT-MSCs or even EPCs. The aim of this study was to analyze the secretomes of these rabbit stem/progenitor cells. A large-scale human cytokine array (up to 80 cytokines) was used to identify and compare cytokines secreted into conditioned media of human and rabbit AT-MSCs as well as HUVECs and rabbit EPCs. Few cytokines were highly expressed by human AT-MSCs (TIMP-2, TIMP-1), HUVECs (MCP-1, TIMP-2, GRO, Angiogenin, IL-8, TIMP-1), or by rabbit EPCs (TIMP-2). Several cytokines have moderate expression by human (MCP-1, GRO, Angiogenin, TGF-β 2, IL-8, LIF, IL-6, Osteopontin, Osteoprotegerin) and rabbit AT-MSCs (TIMP-2, TGF-β 2, LIF, Osteopontin, IL-8, IL-5, IL-3) or by HUVECs (IL-6, MIF, TGF-β 2, GCP-2, IGFBP-2, Osteoprotegerin, EGF, LIF, PDGF-BB, MCP-3, Osteopontin, Leptin, IL-5, ENA-78, TNF-β) and rabbit EPCs (TGF-β 2, Osteopontin, GRO, LIF, IL-8, IL-5, IL-3). In conclusion, the proposed method seems to be useful for the secretome analysis of rabbit stem/progenitor cells.  相似文献   

15.
Osteoarthritis (OA) is a chronic, progressive, and irreversible degenerative joint disease. Conventional OA treatments often result in complications such as pain and limited activity. However, transplantation of mesenchymal stem cells (MSCs) has several beneficial effects such as paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. In addition, MSCs can be differentiated into several cell types, including chondrocytes, osteocytes, endothelia, and adipocytes. Thus, transplantation of MSCs is a suggested therapeutic tool for treatment of OA. However, transplanted naïve MSCs can cause problems such as heterogeneous populations including differentiated MSCs and undifferentiated cells. To overcome this problem, new strategies for inducing differentiation of MSCs are needed. One possibility is the application of microRNA (miRNA) and small molecules, which regulate multiple molecular pathways and cellular processes such as differentiation. Here, we provide insight into possible strategies for cartilage regeneration by transplantation of differentiated MSCs to treat OA patients.  相似文献   

16.
Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1β)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.  相似文献   

17.
Notch signaling has been identified as a critical regulator of cartilage development and homeostasis. Its pivotal role was established by both several joint specific Notch signaling loss of function mouse models and transient or sustained overexpression. NOTCH1 is the most abundantly expressed NOTCH receptors in normal cartilage and its expression increases in osteoarthritis (OA), when chondrocytes exit from their healthy “maturation arrested state” and resume their natural route of proliferation, hypertrophy, and terminal differentiation. The latter are hallmarks of OA that are easily evaluated in vitro in 2-D or 3-D culture models. The aim of our study was to investigate the effect of NOTCH1 knockdown on proliferation (cell count and Picogreen mediated DNA quantification), cell cycle (flow cytometry), hypertrophy (gene and protein expression of key markers such as RUNX2 and MMP-13), and terminal differentiation (viability measured in 3-D cultures by luminescence assay) of human OA chondrocytes. NOTCH1 silencing of OA chondrocytes yielded a healthier phenotype in both 2-D (reduced proliferation) and 3-D with evidence of decreased hypertrophy (reduced expression of RUNX2 and MMP-13) and terminal differentiation (increased viability). This demonstrates that NOTCH1 is a convenient therapeutic target to attenuate OA progression.  相似文献   

18.
19.
Human gingival mesenchymal stem cells (GMSCs) are derived from migratory neural crest stem cells and have the potential to differentiate into neurons. Metformin can inhibit stem–cell aging and promotes the regeneration and development of neurons. In this study, we investigated the potential of metformin as an enhancer on neuronal differentiation of GMSCs in the growth environment of chitosan hydrogel. The crosslinked chitosan/β–glycerophosphate hydrogel can form a perforated microporous structure that is suitable for cell growth and channels to transport water and macromolecules. GMSCs have powerful osteogenic, adipogenic and chondrogenic abilities in the induction medium supplemented with metformin. After induction in an induction medium supplemented with metformin, Western blot and immunofluorescence results showed that GMSCs differentiated into neuron–like cells with a significantly enhanced expression of neuro–related markers, including Nestin (NES) and β–Tubulin (TUJ1). Proteomics was used to construct protein profiles in neural differentiation, and the results showed that chitosan hydrogels containing metformin promoted the upregulation of neural regeneration–related proteins, including ATP5F1, ATP5J, NADH dehydrogenase (ubiquinone) Fe–S protein 3 (NDUFS3), and Glutamate Dehydrogenase 1 (GLUD1). Our results help to promote the clinical application of stem–cell neural regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号