首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In recent years, functional networks have emerged as an extension of artificial neural networks (ANNs). In this article, we apply both network techniques to predict the catches of the Prionace Glauca (a class of shark) and the Katsowonus Pelamis (a variety of tuna, more commonly known as the Skipjack). We have developed an application that will help reduce the search time for good fishing zones and thereby increase the fleets competitivity. Our results show that, thanks to their superior learning and generalisation capacities, functional networks are more efficient than ANNs. Our data proceeds from remote sensors. Their spectral signatures allow us to calculate products that are useful for ecological modelling. After an initial phase of digital image processing, we created a database that provides all the necessary patterns to train both network types.  相似文献   

2.
In this paper, we investigate the problem of time series forecasting using single hidden layer feedforward neural networks (SLFNs), which is optimized via multiobjective evolutionary algorithms. By utilizing the adaptive differential evolution (JADE) and the knee point strategy, a nondominated sorting adaptive differential evolution (NSJADE) and its improved version knee point-based NSJADE (KP-NSJADE) are developed for optimizing SLFNs. JADE aiming at refining the search area is introduced in nondominated sorting genetic algorithm II (NSGA-II). The presented NSJADE shows superiority on multimodal problems when compared with NSGA-II. Then NSJADE is applied to train SLFNs for time series forecasting. It is revealed that individuals with better forecasting performance in the whole population gather around the knee point. Therefore, KP-NSJADE is proposed to explore the neighborhood of the knee point in the objective space. And the simulation results of eight popular time series databases illustrate the effectiveness of our proposed algorithm in comparison with several popular algorithms.  相似文献   

3.
In this paper a steganalysis technique is proposed for pixel-value differencing method. This steganographic method, which is immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is different as compared with a cover image. A number of characteristics are identified in the difference histogram that show meaningful alterations when an image is embedded. Five distinct multilayer perceptrons neural networks are trained to detect different levels of embedding. Every image is fed to all networks and a voting system categorizes the image as stego or cover. The implementation results indicate 88.6% success in correct categorization of the test images that contained more than 20% embedding. Furthermore, using a neural network an estimator is presented which gives an estimate of the amount of the MPVD embedding in an image. Implementation of the estimator showed an average accuracy of 88.3% in the estimation of the amount of embedding.  相似文献   

4.
A methodology with back-propagation neural network models is developed to explore the artificial neural nets (ANN) technology in the new application territory of design optimization. This design methodology could go beyond the Hopfield network model, Hopfield and Tank (1985), for combinatorial optimization problems In this approach, pattern classification with back-propagation network, the most demonstrated power of neural networks applications, is utilized to identify the boundaries of the feasible and the infeasible design regions. These boundaries enclose the multi-dimensional space within which designs satisfy all design criteria. A feedforward network is then incorporated to perform function approximation of the design objective function. This approximation is performed by training the feedforward network with objective functions evaluated at selected design sets in the feasible design regions. Additional optimum design sets in the classified feasible regions are calculated and included in the successive training sets to improve the function mapping. Iteration is continued until convergent criteria are satisfied. This paper demonstrates that the artificial neural nets technology provides a global perspective of the entire design space with good and near optimal solutions. ANN can indeed be a potential technology for design optimization.  相似文献   

5.
为提高热轧生产过程中板带凸度的预测精度,提出了一种将粒子群优化算法(particle swarm optimization, PSO)、支持向量回归(support vector regression, SVR)和BP神经网络(back propagation neural network, BPNN)相结合的板带凸度预测模型。采用PSO算法优化SVR模型的参数,建立了PSO-SVR板带凸度预测模型,提出采用BPNN建立板带凸度偏差模型与PSO-SVR板带凸度模型相结合的方法对板带凸度进行预测。采用现场数据对模型的预测精度进行验证,并采用统计指标评价模型的综合性能。仿真结果表明,与PSO-SVR、SVR、BPNN和GA-SVR模型进行比较,PSO-SVR+BPNN模型具有较高的学习能力和泛化能力,并且比GA-SVR模型运算时间短。  相似文献   

6.
Review of pulse-coupled neural networks   总被引:2,自引:0,他引:2  
This paper reviews the research status of pulse-coupled neural networks (PCNN) in the past decade. Considering there are too many publications about the PCNN, we summarize main approaches and point out interesting parts of the PCNN researches rather than contemplate to go into details of particular algorithms or describe results of comparative experiments. First, the current status of the PCNN and some modified models are briefly introduced. Second, we review the PCNN applications in the field of image processing (e.g. image segmentation, image enhancement, image fusion, object and edge detection, pattern recognition, etc.), then applications in other fields also are mentioned. Subsequently, some existing problems are summarized, while we give some suggestions for the solutions to some puzzles. Finally, the trend of the PCNN is pointed out.  相似文献   

7.
基于遗传算法的人工神经网络的应用综述   总被引:8,自引:0,他引:8  
本文介绍了一种新型的、随机性的全局优化方法-遗传算法,系统地讨论了基于遗传算法的人工神经网络的主要应用,并给出了大量实验数据,实验结果表明遗传算法具有快速学习网络权重的能力,并且能够摆脱局部极点的困扰。  相似文献   

8.
In particle swarm optimization (PSO) each particle uses its personal and global or local best positions by linear summation. However, it is very time consuming to find the global or local best positions in case of complex problems. To overcome this problem, we propose a new multi-objective variant of PSO called attributed multi-objective comprehensive learning particle swarm optimizer (A-MOCLPSO). In this technique, we do not use global or local best positions to modify the velocity of a particle; instead, we use the best position of a randomly selected particle from the whole population to update the velocity of each dimension. This method not only increases the speed of the algorithm but also searches in more promising areas of the search space. We perform an extensive experimentation on well-known benchmark problems such as Schaffer (SCH), Kursawa (KUR), and Zitzler–Deb–Thiele (ZDT) functions. The experiments show very convincing results when the proposed technique is compared with existing versions of PSO known as multi-objective comprehensive learning particle swarm optimizer (MOCLPSO) and multi-objective particle swarm optimization (MOPSO), as well as non-dominated sorting genetic algorithm II (NSGA-II). As a case study, we apply our proposed A-MOCLPSO algorithm on an attack tree model for the security hardening problem of a networked system in order to optimize the total security cost and the residual damage, and provide diverse solutions for the problem. The results of our experiments show that the proposed algorithm outperforms the previous solutions obtained for the security hardening problem using NSGA-II, as well as MOCLPSO for the same problem. Hence, the proposed algorithm can be considered as a strong alternative to solve multi-objective optimization problems.  相似文献   

9.
Remote health monitoring adoption model based on artificial neural networks   总被引:1,自引:0,他引:1  
The purpose of this research is to utilize the adoption model of remote health monitoring established by artificial neural networks (ANNs). The adoption model by the naming is the healthcare information adoption model (HIAM) that it is created first time by myself. The HIAM focused on citizens in Taiwan as research subjects. The main research result showed that people’s perceived usefulness and benefits (PUB) must be raised in order to effectively increase the adoption of remote health monitoring. Moreover, this research has proved that the utilization of the adoption model of remote health monitoring established by ANN based on the HIAM is feasible. These findings may offer significant reference for subsequent studies.  相似文献   

10.
It is significant to build up the risk classification model of cervical cancer for the evaluation of high-risk population. Data were divided into two sub-data, one is model building sub-data, the other is model testing sub-data. By using of artificial neural network (ANN) analysis method (Back Propagation, BP), the risk classification model had been setup. The parameters were listed as following: the data had been treated as normalization, and the level of network was 3, and the number of neural in hidden level was 5, and the transmitting function between input level and hidden level was logsig, and the transmitting function between hidden level and output level was purelin, and the studying method was Levenberg–Marquardt optimizing, and the error parameter eg = 0.09, maximum epochs me = 8000. The model quality was good (sensitivity = 98%, specificity = 97%), and the back calculation fitting result was excellent. The predictive value of 10 unknown data was also good, during which the correct rate of control group was 100%, and that of case group was 80%. Because ANN is with the character of self-organizing, self-learning and self-adapting, the ANN risk classification model is fit for the screening of high-risk population of local cervical cancer, risk evaluation of cervical cancer and the effect evaluation of the prevention method after training the model by new data of some area.  相似文献   

11.
人工神经网络在传感器数据融合中的应用   总被引:1,自引:2,他引:1  
针对压力传感器对温度的交叉灵敏度,采用BP人工神经网络法对其进行数据融合处理。消除温度对压力传感器的影响,大大提高了传感器的稳定性及其精度,效果良好。  相似文献   

12.
基于遗传算法的人工神经网络   总被引:29,自引:0,他引:29  
为克服和改进传统的BP算法的不足,发挥神经网络和遗传算法各自的优势,提出了一种基于遗传算法的神经网络二次训练方法,将遗传算法应用于神经网络的权值训练中,并用神经网络二次训练得到最终结果,降低了计算时间,是一种比较有效的方法。  相似文献   

13.
The ability of artificial neural networks (ANN) to model the unsteady aerodynamic force coefficients of flapping motion kinematics has been studied. A neural networks model was developed based on multi-layer perception (MLP) networks and the Levenberg–Marquardt optimization algorithm. The flapping kinematics data were divided into two groups for the training and the prediction test of the ANN model. The training phase led to a very satisfactory calibration of the ANN model. The attempt to predict aerodynamic forces both the lift coefficient and drag coefficient showed that the ANN model is able to simulate the unsteady flapping motion kinematics and its corresponding aerodynamic forces. The shape of the simulated force coefficients was found to be similar to that of the numerical results. These encouraging results make it possible to consider interesting and new prospects for the modelling of flapping motion systems, which are highly non-linear systems.  相似文献   

14.
针对径向基函数网络和传统遗传算法的一些不足,提出引入一种自适应机制的浮点数编码的遗传算法,并将其与梯度下降法混合交互运算,作为径向基函数网络的学习算法,形成了基于改进遗传算法的径向基函数网络,它克服了径向基函数网络的学习算法上的缺陷。采用改进的遗传算法,无需计算梯度等,限制很少,还可用模型的预测性能作为优化目标。同时,也解决了单独利用遗传算法往往只能在短时间内寻找到接近全局最优解的近似解这一问题。最后将该算法应用到某地区电力负荷预测取得理想效果。  相似文献   

15.
基于混合量子遗传算法的过程神经元网络训练   总被引:1,自引:0,他引:1  
针对过程神经元网络现有学习算法复杂度高、对初值敏感的问题,提出了一种基于混合量子遗传算法 的过程神经元网络训练方法。将过程神经元网络的训练转换为等价非线性方程组的优化求解问题,用量子比特 构成染色体,采用实数对染色体进行编码,同时引入拟牛顿算法作局部搜索。该算法可发挥量子遗传算法的群 体搜索能力和全局收敛性,以及拟牛顿法较快的收敛速度,同时有效克服了拟牛顿算法对初值敏感的问题。训 练结果表明,此算法具有较好的稳定性和有效性。  相似文献   

16.
在分析并行多物种遗传算法应用于神经网络拓扑结构的设计和学习之后,提出一种伪并行遗传(PPGA-MBP)混合算法,结合改进的BP算法对多层前馈神经网络的拓扑结构进行优化。算法编码采用基于实数的层次混合方式,允许两个不同结构的网络个体交叉生成有效子个体。利用该算法对N-Parity问题进行了实验仿真,并对算法中评价函数各部分系数和种群规模对算法的影响进行了分析。实验证明取得了明显的优化效果,提高了神经网络的自适应能力和泛化能力,具有全局快速收敛的性能。  相似文献   

17.
针对"随着预测距离的增加,旅行时间预测的难度加大"的问题,提出了一种基于时空特征向量的长短期记忆(LSTM)和人工神经网络(ANN)的综合预测模型.首先,将24 h切分为288个时间切片,以生成时间特征向量;然后,基于时间切片建立LSTM时间窗口模型,该模型可解决长期预测的窗口移动问题;其次,将公交线路切分为多个空间切...  相似文献   

18.
Accurate and timely access to data describing disaster impact and extent of damage is key to successful disaster management (a process that includes prevention, mitigation, preparedness, response, and recovery). Airborne data acquisition using helicopter and unmanned aerial vehicle (UAV) helps obtain a bird’s-eye view of disaster-affected areas. However, a major challenge to this approach is robustly processing a large amount of data to identify and map objects of interest on the ground in real-time. The current process is resource-intensive (must be carried out manually) and requires offline computing (through post-processing of aerial videos). This research introduces and evaluates a series of convolutional neural network (CNN) models for ground object detection from aerial views of disaster’s aftermath. These models are capable of recognizing critical ground assets including building roofs (both damaged and undamaged), vehicles, vegetation, debris, and flooded areas. The CNN models are trained on an in-house aerial video dataset (named Volan2018) that is created using web mining techniques. Volan2018 contains eight annotated aerial videos (65,580 frames) collected by drone or helicopter from eight different locations in various hurricanes that struck the United States in 2017–2018. Eight CNN models based on You-Only-Look-Once (YOLO) algorithm are trained by transfer learning, i.e., pre-trained on the COCO/VOC dataset and re-trained on Volan2018 dataset, and achieve 80.69% mAP for high altitude (helicopter footage) and 74.48% for low altitude (drone footage), respectively. This paper also presents a thorough investigation of the effect of camera altitude, data balance, and pre-trained weights on model performance, and finds that models trained and tested on videos taken from similar altitude outperform those trained and tested on videos taken from different altitudes. Moreover, the CNN model pre-trained on the VOC dataset and re-trained on balanced drone video yields the best result in significantly shorter training time.  相似文献   

19.
交叉口作为交通流调度的重要组成部分,其交通信号配时将直接影响道路通行效率。针对快速非支配排序遗传算法(NSGA II)的精英保留策略会使大量冗余的高排序级别个体同时作为精英保留到下一代,极易发生早熟收敛现象问题,提出了改进的快速非支配排序遗传算法(I-NSGA II),并将其应用于交通信号多目标优化问题。I-NSGA II提出了冗余个体标记方法,之后的精英保留策略会通过该标记来判断去除冗余个体并将其并入临时层级,最后在生成的新种群规模不足时,会从临时层级中取出相应规模的冗余个体,对其进行变异操作后并入新种群。实验表明I-NSGA II在保证停车率和排队长度基本不变的情况下,减少了车辆及行人延误,证明所提出的算法可提高交通路口综合交通效益。  相似文献   

20.
基于遗传算法的BP神经网络在企业资信评估中的应用   总被引:7,自引:0,他引:7  
提出了一种新的企业资信评估方法.通过把神经网络和遗传算法有机地结合起来,既克服了传统BP网络训练时间长、易陷入局部极值的缺点,又利用遗传算法提高了网络全局收敛的效率.该模型采用C#.NET SQL server 2000实现.实验结果表明,基于遗传算法的BP神经网络系统对企业资信评估有着良好的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号