首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the application of various preservation methods, many problems are still encountered as a result of food spoilage and food poisoning. There is increasing demand for foods produced with milder treatments, and the movement towards more natural and even certified organic foods has been the fastest growing sector of the food industry over the last decade. The interest in bio-preservation of food systems has necessitated the development of new natural antimicrobial compounds from different origins, and in response to modern consumer trends and food legislation, the food industry is faced with serious challenges. Both conventional and organic modes of production are at risk of contamination, but it is possible that organic food might present a bigger problem. Organic acids have been of considerable value as food preservatives since they are also food ingredients and often naturally produced by microorganisms. However, limited data on their effects in commercial practice are available, and despite regulatory approval, organic acids are not widely accepted in commercial practice, and in particular in meat decontamination.

Susceptibility of microorganisms to the most currently used preservatives has been decreasing, and there is concern that decontamination with organic acids could result in the emergence of acid-tolerant food-borne pathogens, evolving to overcome the protective barrier of the human gastric stomach. In the evaluation and integration of new processing/preservation treatments, research objectives would have to include the identification of specific targets of organic acids—understanding the molecular mechanisms that confer high level resistance and analysing pathogen response to antimicrobials. This article provides an overview of various studies done on organic acids as preservatives and highlights aspects such as application, antimicrobial action, and future prospects. Other important issues, such as the application of functional genomics in developing new preservation methods, resistance development, and conventional laboratory procedures are also discussed.  相似文献   

2.
Despite the application of various preservation methods, many problems are still encountered as a result of food spoilage and food poisoning. There is increasing demand for foods produced with milder treatments, and the movement towards more natural and even certified organic foods has been the fastest growing sector of the food industry over the last decade. The interest in bio-preservation of food systems has necessitated the development of new natural antimicrobial compounds from different origins, and in response to modern consumer trends and food legislation, the food industry is faced with serious challenges. Both conventional and organic modes of production are at risk of contamination, but it is possible that organic food might present a bigger problem. Organic acids have been of considerable value as food preservatives since they are also food ingredients and often naturally produced by microorganisms. However, limited data on their effects in commercial practice are available, and despite regulatory approval, organic acids are not widely accepted in commercial practice, and in particular in meat decontamination.

Susceptibility of microorganisms to the most currently used preservatives has been decreasing, and there is concern that decontamination with organic acids could result in the emergence of acid-tolerant food-borne pathogens, evolving to overcome the protective barrier of the human gastric stomach. In the evaluation and integration of new processing/preservation treatments, research objectives would have to include the identification of specific targets of organic acids—understanding the molecular mechanisms that confer high level resistance and analysing pathogen response to antimicrobials. This article provides an overview of various studies done on organic acids as preservatives and highlights aspects such as application, antimicrobial action, and future prospects. Other important issues, such as the application of functional genomics in developing new preservation methods, resistance development, and conventional laboratory procedures are also discussed.  相似文献   

3.
Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food‐grade bacteria and applied in normally occurring concentrations can be used as GRAS‐status food additives. However, successful application requires thorough characterization. © 2013 Society of Chemical Industry  相似文献   

4.
Natural antimicrobial agents have been investigated as alternatives to synthetic ones for ensuring food safety and quality. However, the practical use of these preservatives in the food industry is limited due to their negative impact on the odor and taste of food products, as well as the early loss of functionality due to their rapid diffusion and interaction with food components. The incorporation of natural antimicrobial agents into edible coatings has been investigated to control diffusion of active compounds and maintain their concentrations at a critical level on a food surface. Recently, nanoencapsulating and multilayered/nanolaminate delivery systems have emerged as promising tools to enhance the functionality of edible coatings. This review highlights the potential use of polymeric edible coatings for the incorporation of natural antimicrobial agents and the improvement of their controlled release in food systems. The methods used to assess the antimicrobial activity of encapsulated natural antimicrobial agents and the most recent findings regarding the application of nanoencapsulating and multilayered/nanolaminate delivery systems in food products are also discussed.  相似文献   

5.
The food industry demands new procedures and methods to produce minimally processed, ready to eat food with intact nutritional, taste, and flavor properties. The biopreservation and the use of both bacteriocins produced by lactic acid bacteria (LAB) and bacteriocinogenic strains as an alternative to substitute chemical antimicrobial for food preservation became increasingly important in the last two decades. When the new proposed natural preservatives techniques are applied, probiotics food can be obtained and, simultaneously, foodborne pathogens and spoilage contaminants can diminish. However, bacteriocins produced by LAB have a narrow antibacterial spectrum and are inactive against Gram-negative bacteria like Salmonella and the emergent enterohemorrhagic Escherichia coli. Knowing the mechanism of action and the structural features of microcins synthesized by Gram-negative bacteria and with potent antimicrobial activity against the mentioned microorganism, the proposal is to obtain hybrid peptides (microcin–bacteriocin) with broad antimicrobial spectrum. This review explains how the inability of bacteriocins to cross the outer membrane of Gram-negative bacteria unable them to act on the bacteria. It will also be discussed how a hybrid bacteriocin can be obtained.  相似文献   

6.
Cross‐contamination of foods with pathogenic microorganisms such as bacteria, viruses, and parasites may occur at any point in the farm to fork continuum. Food contact and nonfood contact surfaces are the most frequent source of microbial cross‐contamination. In the wake of new and emerging food safety challenges, including antibiotic‐resistant human pathogens, conventional sanitation and disinfection practices may not be sufficient to ensure safe food processing, proper preparation, and also not be environmentally friendly. Nanotechnology‐enabled novel food safety interventions have a great potential to mitigate the risk of microbial cross‐contamination in the food chain. Especially engineered nanoparticles (ENPs) are increasingly finding novel applications as antimicrobial agents. Among various ENPs, photocatalyst metal oxides have shown great promise as effective nontargeted disinfectants over a wide range of microorganisms. The present review provides an overview of antimicrobial properties of various photocatalyst metal oxides and their potential applications as surface coatings. Further, this review discusses the most common approaches to developing antimicrobial coatings, methods to characterize, test, and evaluate antimicrobial efficacy as well as the physical stability of the coatings. Finally, regulations and challenges concerning the use of these novel photocatalytic antimicrobial coatings are also discussed.  相似文献   

7.
Essential oils derived from plants have been recognized for decades to exhibit biological activities, including antioxidant, anticancer, and antimicrobial attributes. Antimicrobial activities of these natural plant materials have been intensively explored in recent years, mainly in response to the overwhelming concern of consumers over the safety of synthetic food additives. Gram-negative organisms are believed to be slightly less sensitive to essential oils than Gram-positive bacteria. Generally, a higher concentration is required to obtain the same efficacy in foods than in synthetic media. The combinations of different types of essential oils or with other food additives have been found to potentially exhibit synergistic if not additive effects. This suggests a cost-efficient and wholesome alternative to both food industry and consumers, at the same time adhering to the hurdle technology in inhibiting proliferation of foodborne pathogens. This review aims to examine the conventional methods commonly used for assessment of antimicrobial activities of essential oils and phytochemicals, the use of these substances as antimicrobials in food products, factors that affect their efficacy, synergism between components or with available food preservatives as well as the challenges and future directions of using essential oils and phytochemicals as natural food preservatives.  相似文献   

8.
Mohammed Aider 《LWT》2010,43(6):837-2062
During the past decade, there was an increasing interest to develop and use bio-based active films which are characterized by antimicrobial and antifungal activities in order to improve food preservation and to reduce the use of chemical preservatives. Biologically active bio-molecules such as chitosan and its derivatives have a significant potential in the food industry in view of contaminations associated with food products and the increasing concerns in relation with the negative environmental impact of conventional packaging materials such as plastics. Chitosan offers real potential for applications in the food industry due to its particular physico-chemical properties, short time biodegradability, biocompatibility with human tissues, antimicrobial an antifungal activities, and non-toxicity. Thus, chitosan-based films have attracted serious attention in food preservation and packaging technology. This is mainly due to a fact that chitosan exhibits high antimicrobial activity against pathogenic and spoilage micro-organisms, including fungi, and both Gram-positive and Gram-negative bacteria. The aim of the present review was to summarize the most important information on chitosan from its bioactivity point of view and to highlight various preparative methods used for chitosan-based active bio-films and their potential for applications in the food preservation and packaging technology.  相似文献   

9.
Bacteriocin-based strategies for food biopreservation   总被引:13,自引:2,他引:11  
Bacteriocins are ribosomally-synthesized peptides or proteins with antimicrobial activity, produced by different groups of bacteria. Many lactic acid bacteria (LAB) produce bacteriocins with rather broad spectra of inhibition. Several LAB bacteriocins offer potential applications in food preservation, and the use of bacteriocins in the food industry can help to reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods which are more naturally preserved and richer in organoleptic and nutritional properties. This can be an alternative to satisfy the increasing consumers demands for safe, fresh-tasting, ready-to-eat, minimally-processed foods and also to develop "novel" food products (e.g. less acidic, or with a lower salt content). In addition to the available commercial preparations of nisin and pediocin PA-1/AcH, other bacteriocins (like for example lacticin 3147, enterocin AS-48 or variacin) also offer promising perspectives. Broad-spectrum bacteriocins present potential wider uses, while narrow-spectrum bacteriocins can be used more specifically to selectively inhibit certain high-risk bacteria in foods like Listeria monocytogenes without affecting harmless microbiota. Bacteriocins can be added to foods in the form of concentrated preparations as food preservatives, shelf-life extenders, additives or ingredients, or they can be produced in situ by bacteriocinogenic starters, adjunct or protective cultures. Immobilized bacteriocins can also find application for development of bioactive food packaging. In recent years, application of bacteriocins as part of hurdle technology has gained great attention. Several bacteriocins show additive or synergistic effects when used in combination with other antimicrobial agents, including chemical preservatives, natural phenolic compounds, as well as other antimicrobial proteins. This, as well as the combined use of different bacteriocins may also be an attractive approach to avoid development of resistant strains. The combination of bacteriocins and physical treatments like high pressure processing or pulsed electric fields also offer good opportunities for more effective preservation of foods, providing an additional barrier to more refractile forms like bacterial endospores as well. The effectiveness of bacteriocins is often dictated by environmental factors like pH, temperature, food composition and structure, as well as the food microbiota. Foods must be considered as complex ecosystems in which microbial interactions may have a great influence on the microbial balance and proliferation of beneficial or harmful bacteria. Recent developments in molecular microbial ecology can help to better understand the global effects of bacteriocins in food ecosystems, and the study of bacterial genomes may reveal new sources of bacteriocins.  相似文献   

10.
抗真菌性乳酸菌生物保护剂的研究进展   总被引:3,自引:2,他引:1       下载免费PDF全文
霉菌和酵母不仅引起果蔬、谷类、乳制品和肉制品等食品及农产品腐败变质,造成巨大的经济损失,而且霉菌还产生有害于人体健康的黄曲霉毒素、伏马菌素、单端孢霉烯、赭曲霉素A和棒曲霉素等真菌毒素,给食用者带来潜在的食品安全隐患。随着消费者对鲜活和微加工食品的需求不断增加,化学防腐剂在食品中应用受到限制,食品生物保护剂研究及应用已成为热点。乳酸菌通过生态位竞争、形成酸性环境和产生各种代谢产物对致病菌和腐败微生物具有较强的拮抗作用,作为一新型生物保护剂已广泛应用于各种食品中。本文对食品中抗真菌性乳酸菌的筛选和应用、乳酸菌产生的抗真菌代谢产物以及发展趋势进行综述,为进一步探究乳酸菌抗菌机理,研发高效食品生物保护剂提供借鉴与参考。  相似文献   

11.
抗菌肽是抵抗外源病原微生物的天然免疫小分子多肽,存在于多种生物体内,具有广谱抗菌、可抑制多重耐药菌的繁殖、活性稳定、免疫原性低、绿色无公害等优点,在食物储藏与保鲜中显示了巨大的应用潜力.对抗菌肽的功能、制备方法、抗菌机制及其在食品储藏和保鲜中的应用进行了总结分析,以期为发展有针对性的新型食物保鲜剂提供思路.  相似文献   

12.
食源性疾病引发的食品安全问题对人类健康造成严重危害, 其中微生物致病菌是引起食源性疾病的最主要因素,近年来国内外由微生物致病菌引起的食源性疾病事件频频发生,受到世界各国的高度关注。食品工业防治食源性致病微生物的传统方法中,化学防腐剂存在副作用、天然防腐剂较弱的抗微生物活性以及大规模抗生素使用带来的耐药性等一系列问题,使寻求新的抗菌药物或制剂迫在眉睫。噬菌体裂解酶是双链DNA噬菌体复制后期表达, 能够裂解细菌细胞壁释放子代噬菌体的一种蛋白水解酶。随着近些年针对噬菌体及其产物展开的研究不断深入,噬菌体裂解酶凭借高度特异性、不影响正常菌群等特性, 从治疗人类耐药感染到控制多个领域的细菌污染, 成为了包括微生物食品安全在内多种应用中有效的抗微生物制剂。  相似文献   

13.
文章综述了近年来国内外对于辛香料精油在抑菌方面的研究,以及在果蔬采后保藏及肉品保藏方面的应用性研究进展。辛香料精油对多种食源性致病细菌和真菌均具有很好的抑菌效果,是一种高效、安全的食品防腐剂来源。  相似文献   

14.
食品安全问题一直为人们所关注,其中微生物污染是导致食品腐败变质的主要原因。抗菌肽来源广泛,抑菌谱广,杀菌速度快,可以较好地控制食品中腐败微生物的滋生;对pH值、蛋白酶和热处理有较好的稳定性,在成分复杂的食品体系中有一定的适用性;由于其抑菌机理特殊,不易产生耐药性;部分具有抗氧化和提高免疫力等多种功能,对人体具有一定的保健作用。抗菌肽的以上特点满足了人们对新型防腐保鲜剂的多种需求,有望在食品工业上发挥重大作用。因此,在抗菌肽的生物学功能以及抗菌肽保鲜机理简单介绍的基础上,对抗菌肽应用于不同食品中的研究现况进行详细综述,最后对抗菌肽在食品中应用目前存在的问题和发展方向提供了思考。  相似文献   

15.
Globalization of food trade, increasing demand for ready to eat fresh food products, and awareness among consumers towards side effects of chemical preservatives have led to research and development in the area of biopreservation. Biopreservation basically involves inhibition or killing of food spoilage microorganisms by the application of other microbes or their antimicrobial products. Bacteriocins are ribosomally synthesized peptides having potential as biopreservatives. The enhanced, stable, continuous, and economically viable production of these preservatives can be carried out by employing immobilization technology. Various matrices, operational conditions, and fermentation systems have been explored for achieving maximum bacteriocin production through immobilization; besides these, immobilization can be used for the application of bacteriocins in various packaging materials or films for their functional effects at the surface of different food products. Efficiency of an antimicrobial packaging system can be increased by its application in combination with other methods, including high-pressure processing (HPP), which in turn can improve the shelf life of food products. These antimicrobial packaging systems can play a significant role in extending shelf life of food products by reducing the risk of foodborne pathogens, thereby enhancing their quality and safety.  相似文献   

16.
乳酸菌细菌素抗菌潜力挖掘研究进展   总被引:3,自引:0,他引:3  
乳酸菌产生的主要抗菌防腐物质是有机酸,但在乳酸菌代谢产物中发现了细菌素等其它抗菌物质,其中有的细菌素甚至具有强烈的抗真菌能力。世界范围内启动的乳酸菌基因组计划创造了巨大的生物信息流。乳酸菌基因组蕴含的生物信息将对研究乳酸菌细菌素的合成代谢途径,功能基因挖掘以及新型抗菌剂的开发搭建信息平台。结合乳酸菌细菌素的最新研究进展,讨论利用乳酸菌基因组探索乳酸菌的抗菌潜力及其作为生物防腐剂在食品保藏中的应用前景。  相似文献   

17.
Many food preservation strategies can be used for the control of microbial spoilage and oxidation; however, these quality problems are not yet controlled adequately. Although synthetic antimicrobial and antioxidant agents are approved in many countries, the use of natural safe and effective preservatives is a demand of food consumers and producers. This paper proposes medicinal plants, traditionally used to treat health disorders and prevent diseases, as a source of bioactive compounds having food additive properties. Medicinal plants are rich in terpenes and phenolic compounds that present antimicrobial and antioxidant properties; in addition, the literature revealed that these bioactive compounds extracted from other plants have been effective in food systems. In this context, the present hypothesis paper states that bioactive molecules extracted from medicinal plants can be used as antimicrobial and antioxidant additives in the food industry.  相似文献   

18.
The increasing consumer's demand regarding the healthy diet has promoted the research towards novel approaches for preserving minimally processed fruits and vegetables without the necessity of using preservatives. Emulsion-based edible coatings technology is considered a valuable alternative to improve fresh-cut fruit and vegetable quality. This review discusses some recent advances for the preservation of the quality and safety of fresh-cut fruits and vegetables with respect to the use of nanoemulsion-based edible coatings as carrier of functional compounds such as antimicrobial agents, antioxidants and texture enhancers. It focuses especially on the use of natural functional compounds in food preservation as an alternative to synthetic additives. Moreover, the preparation and characterisation of nanoemulsion are also reviewed.  相似文献   

19.
A large range of ingredients for food and food products are subject to fungal contamination, which is a major cause of destruction of crops, exposure of animals and humans to invasive mycotoxins, and food spoilage. The resistance of fungal species to common preservation methods highlights the necessity of new ways to increase the shelf life of raw material for food and food products. Antimicrobial peptides and proteins (AMPs) are essential members of the immune system of most living organisms. Due to their broad range of activity and their stability to commonly used food processes, they represent promising alternatives to traditional preservatives. However, despite the growing number of reports of potential food applications of these AMPs, the number of approved peptides is low. Poor solubility, toxicity, and a time‐consuming extraction are hurdles that limit their application in food products. Thanks to a deep understanding of the key determinants of their activity, the development of optimized synthetic peptides has reduced these drawbacks. This review presents natural and synthetic antifungal peptides/proteins (AFPs), effective against food‐related fungi, with particular emphasis on AFPs from plant sources. The design of novel antifungal peptides via key elements of antifungal activity is also reviewed. The potential applications of natural and synthetic AFPs as novel antifungal food preservatives are finally discussed.  相似文献   

20.
Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy‐based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy‐based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号