首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Two sugar‐based polysiloxane surfactants with well‐defined structures, 3‐(2‐aminoethylamino)propyl functional polysiloxane glucosamide grafted (AEAPFPS‐GA) and 3‐(2‐aminoethylamino)propyl functional polysiloxane lactobionamide grafted (AEAPFPS‐LA), were successfully synthesized and characterized by FT‐IR and 1H NMR. Their surface activities and aggregation behavior in aqueous solution were investigated by surface tension measurements, dynamic light scattering (DLS) and negative‐stain transmission electron microscopy (TEM). The surface tension measurements provided the critical micelle concentration (CMC) and the surface tension at the CMC (γCMC), which revealed that these two surfactants have a much higher surface activity than those of conventional hydrocarbon surfactants. DLS and TEM analysis of the two polysiloxane surfactants aqueous solutions revealed that the AEAPFPS‐GA can self‐assemble into collapsed spherical micelles, and the AEAPFPS‐LA can self‐assemble into spherical micelles.  相似文献   

2.
2 bola‐type collagen hydrolysate‐based siloxane surfactants (CBES) were prepared via grafting of an epoxy‐terminated polydimethylsiloxane oligomer onto 2 collagen hydrolysates with different molecular weights. Their structure was characterized by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopy, and the degree of grafting was determined by calculating the free amino content, which confirmed the successful synthesis of CBES. Subsequently, their physicochemical properties, such as particle size and isoelectric point, were evaluated. Besides, surface activities, application functionalities, and biodegradability of CBES were investigated. The results showed that CBES‐1, prepared with the lower‐molecular‐weight collagen hydrolysate, possessed superior surface activity, excellent foaming ability, and good emulsifying capacity comparable to those of a typical emulsifier such as the fatty alcohol polyoxyethylene ether (AEO‐9). In addition, their BOD5/CODCr value and CO2 evolution demonstrated that the CBES are readily biodegradable. There is, therefore, great potential for the bola‐type CBES to be applied in fields such as leather treatment and textile industries.  相似文献   

3.
Functional polyurethane surfactants (di‐block and tri‐block) were synthesized by addition polymerization of 2,4‐toluenediisocyanate with poly(propylene oxide) and monoallyl‐end‐capped poly(ethylene oxide). The chemical structure of the polyurethane surfactants was confirmed by Fourier transform infrared and 1H NMR spectroscopy. These polymeric surfactants were found to have excellent surface activity. The lowest surface tension of polyurethane surfactant aqueous solutions could be reduced to 37.6 mN m?1. All the polyurethane surfactants synthesized had low critical micelle concentrations and could reduce the surface tension even at very low concentration levels (10?6–10?5 mol L?1). The solubilization of toluene in micelles of the synthesized polyurethane surfactants was studied using UV‐visible spectroscopy, and the results showed that they all exhibited good solubilization capacity. Possible solubilization positions of toluene in the micelles are conjectured. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
In this work, a novel series of zwitterionic gemini surfactants with different hydrophobic tails were synthesized and characterized. The physico‐chemical properties of these products (such as surface tension, oil/water interfacial tension, foaming ability, and the wetting ability of paraffin‐coated sandstone) were fully studied. The CMC of the synthesized surfactants ranged from 2.17 × 10?4 mol L?1 to 5.36 × 10?4 mol L?1 and corresponding surface tension (γCMC) ranged from 26.49 mN m?1 to 29.06 mN m?1, which showed excellent efficiency among the comparison surfactants. All the products can reduce the interfacial tension to a relatively low level of about 0.1–1.0 mN m?1. Additionally, results from applying different hydrocarbons suggested that the synergy will be clearer and oil/water interfacial tension will be lower if the oil components are similar to the surfactants. Contact angle and foaming measurements indicated that the surfactants exhibited good wetting and foaming abilities. The results of oil flooding experiments using an authentic sandstone microscopic model showed that C‐12 and CA‐12 could effectively improve the displacement efficiency by 21–29 %.  相似文献   

5.
Several ethoxylated sugar fatty ester surfactants were prepared by the reaction of glucose with three fatty acids, namely, adipic, stearic and palmitic acids to produce GA, GS and GP esters. These glucose esters were then ethoxylated by four different molecular weight polyethylene glycols, namely, 400, 1,000, 2,000 and 4,000 mol L?1. The prepared ethoxylated esters (12 compounds) were characterized by IR and 1H‐NMR spectroscopy. The surface activity of the prepared compounds was thoroughly studied by measuring the surface tension of different solutions of these compounds at three temperatures, namely 298, 308 and 318 K. From the surface tension‐concentration plots of these compounds some surface properties, such as CMC (critical micelle concentration), Γmax (maximum surface excess concentration) and Amin (area occupied per molecule) were calculated. The surface properties of the prepared surfactants were correlated to their chemical structure. It was found that the CMC decreases when increasing the molecular weight of polyethylene glycols, whereas Amin increases. Furthermore, the demulsification test was carried out and the results of demulsification efficiency were correlated to the chemical composition of the investigated compounds. Some factors that affect the demulsification efficiency were also considered. The oil phase recovered from the treated sludge was characterized and mixed with fresh crude to improve its API.  相似文献   

6.
In this study, a series of cationic silicone surfactants SiQCnCl containing ester groups and double long-chain alkyls (n = 9, 11, 13, 15, and 17) were synthesized by microwave irradiation and characterized using infrared Fourier transform (FTIR), 1H nuclear magnetic resonance (1H NMR), and thermogravimetric analysis (TGA). Surface activity and adsorption of these surfactants were investigated by measuring the equilibrium surface tension. The critical micelle concentration (CMC) decreased with increasing alkyl length of SiQCnCl at 25 °C and so did the corresponding surface tension at the CMC (γCMC ). The aggregation behavior in aqueous solutions was also investigated systemically through transmission electron microscopy (TEM) and dynamic light scattering (DLS). Spherical or ellipsoidal-like aggregates with diameters ranging from 300 to 900 nm were observed. It is also shown that the cationic silicone surfactants exhibit certain antibacterial properties against Staphylococcus aureus but slightly poor to Escherichia coli. The morphological structure of SiQC15Cl-treated cotton fabrics was observed using scanning electron microscopy (SEM), which showed that the surface became neat and smooth. What is more, the finished cotton fabrics maintained some antibacterial properties with improved softness, which may provide a more comfortable and healthy lifestyle. This work may also be helpful to the design and application of functional cationic silicone surfactants.  相似文献   

7.
A series of novel cationic gemini surfactants with rigid amido groups inserted as the spacers, named C 12 ‐PPDA‐C 12 , C 14 ‐PPDA‐C 14 and C 16 ‐PPDA‐C 16 , were synthesized by a two‐step reaction with dimethyl terephthalate, N,N‐dimethyl propylene diamine and alkyl bromide as raw materials. The chemical structures of the prepared compounds were confirmed by IR, 1H and 13C NMR and element analysis. Surface activity properties of the synthesized compounds were investigated by surface tension, electrical conductivity and fluorescence. Increasing the number of carbon atoms in the hydrophobic alkyl chain, decreased the critical micelle concentration (CMC), surface tension at the CMC and the minimum surface area. Other relevant properties including foaming ability and emulsion stability were investigated. The results indicated that the synthesized gemini surfactants possess good surface properties, emulsifying properties and steady foam properties.  相似文献   

8.
Decyl and dodecylamino tetrachloroferrates were synthesized and characterized using Fourier-transform infrared spectroscopy (FTIR), elemental analysis, X-ray diffraction (XRD), nuclear magnetic resonance (1H-NMR), and atomic absorption spectroscopy (AAS). The surface properties of the cationic surfactants including critical micelle concentration, effectiveness, minimum surface area, and maximum surface excess were determined using surface tension measurements. The effectiveness of surface tension reduction (πcmc) was found to increase as the hydrophobic chain length increases with values of 30 and 34 mN m−1 for C10 and C12, respectively. Moreover, the effect of temperature on micellization was determined over the range of 35–55 °C. Thermodynamic parameters (ΔG°, ΔS°, and ΔH°) were calculated and the results indicate a spontaneous process for both micellization and adsorption. The nanoparticles (NC10 and NC12) of the prepared surfactants were obtained using the ball mill technique. The particle size and morphology of the nanoparticles were determined using transmission electron microscope measurements. The antibacterial study of the nanoparticle surfactants revealed their strong efficiency against fungi and different pathogenic bacteria compared with the original surfactants.  相似文献   

9.
New amido‐amine‐based cationic gemini surfactants with flexible and rigid spacers and different hydrophobic tails were synthesized and characterized. These gemini surfactants were prepared by a modified procedure through amidation of long chain carboxylic acids using 3‐(dimethylamino)‐1‐propylamine followed by treatment with halohydrocarbons. The effect of the trans and cis conformation of the spacer double bond was investigated by means of critical micelle concentration, surface tension reduction, and thermal stability. The short‐term thermal stability of the gemini surfactants was assessed using thermogravimetric analysis (TGA) and the long‐term thermal stability was examined by a unique approach based on structure characterization techniques including NMR (1H and 13C) and FTIR analysis. TGA results demonstrated excellent short‐term thermal stability since no structure degradation was observed up to 200 °C. Structural characterization revealed impressive long‐term thermal stability of the gemini surfactants with no structure decomposition after exposing them to 90 °C for 10 days. The critical micelle concentration of gemini surfactants was found to be in the range of 0.77 × 10?4–3.61 × 10?4 mol L?1 and corresponding surface tension (γCMC) ranged from 30.34 to 38.12 mN m?1. The surfactant with the trans conformation of spacer double bond showed better surface properties compared to the surfactant with the cis conformation of spacer double bond. Similarly, increasing surfactant tail length and spacer length resulted in decreasing CMC values. Moreover, bromide counterion showed improved surface properties compared to chloride counterion.  相似文献   

10.
A series of trimeric sulfonate surfactants 1,2,3-tri(2-oxypropylsulfonate-3-alkylether-propoxy) propanes were prepared by the reaction of glycerin triglycidyl ether with long-chain alcohols, followed by sulfonation with 1,3-propane sultone. Glycerin triglycidyl ether was synthesized by the reaction of epichlorohydrin with glycerin. The chemical structures of the prepared compounds were confirmed by FTIR, 1H NMR and element analysis. Their solution properties were characterized by use of the method of equilibrium and dynamic surface tension, steady-state fluorescence spectroscopy of pyrene and fluorescence quenching. With the increasing length of the carbon chain, the values of their CMC initially decreased. All these trimeric sulfonate surfactants had good water solubility. These compounds were superior in surface active properties to the reference surfactant SDS. The efficiency of adsorption at the water/air interface (pC20) of these surfactants was very high. It is found that the shorter hydrocarbon chain length of the trimeric sulfonate surfactants, the faster the rate of decrease of surface tension, and the bigger the aggregation number of the trimeric sulfonate surfactants.  相似文献   

11.
The reaction of poly(ethylene glycol) (PEG, number‐average molecular weight Mn = 400‐2000) and dimethyl 5‐sulfoisophthalate sodium salt (SIPM) synthesized a series of anionic polymeric surfactants having a range of molecular weights. 1H‐NMR, FTIR, and elemental analysis were employed to characterize the structures of these compounds. Also, the influences of the PEG segment lengths of PEG/SIPM copolymers on the surface tension, foaming properties, wetting power, and dispersant properties were investigated. The experimental results indicated that the solution that contained the PEG/SIPM copolymer surfactants exhibited excellent surface‐active properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2727–2731, 2002  相似文献   

12.
The synthesis and structural analysis of glucosamide surfactants of the general formula CnH2n+1NH(CH2)2NHCO(CHOH)4CH2OH (n = 8, 10, 12) are described, and the surface activity properties of the surfactants are studied. N‐alkylethylenediamines were synthesized by the alkylation of the ethylenediamine with alkyl bromide. The glucosamide surfactants, N‐alkyl‐N′‐glucosylethylenediamine (CnGA), were prepared by amidation of the precursor diamine with d ‐gluconic acid δ‐lactone. They were structurally characterized by IR, 1H NMR and MS. They reduced the surface tension of water to approximately 26–27 mN m?1 at concentration levels of (0.5–1.6) × 10?3 mol L?1.  相似文献   

13.
In order to improve the water solubility of sugar‐based surfactants, alkyl β‐d‐ xylopyranosides, novel sugar‐based surfactants, 1,2‐trans alkoxyethyl β‐d‐ xylopyranosides, with alkyl chain length n = 6–12 were stereoselectively prepared by the trichloroacetimidate method. Their properties including hydrophilic–lipophilic balance (HLB) number, water solubility, surface tension, emulsification, foamability, thermotropic liquid crystal, and hygroscopicity were investigated. The results indicated that their HLB number decreased with increase of alkyl chain, the water solubility improved since the hydrophilic oxyethene (─OCH2CH2─) fragment was introduced. The dissolution process was entropy driven at 25–45 °C for alkyl chain length n = 6–10. Octyloxyethyl β‐d‐ xylopyranoside had the best foaming ability. Nonyloxyethyl β‐d‐ xylopyranoside had the best foam stability and the emulsifying ability was better in toluene/water system than in rapeseed oil/water system. The surface tension of in aqueous solution dropped to 27.8 mN m?1 at the critical micelle concentration, and it also showed the most distinct thermotropic liquid phases with cross pattern texture upon heating and the fan schlieren texture on cooling. Hexyloxyethyl β‐d‐ xylopyranoside possessed the strongest hygroscopicity. Based on the effective improvement of water solubility, the prepared alkoxyethyl β‐d‐ xylopyranosides showed excellent surface activity and are expected to develop their practical application as a class of novel sugar‐based surfactants.  相似文献   

14.
The effects of hydrophobic chain length on the interfacial and biological properties of diacyl d ‐glyceric acid (d ‐GA) sodium salts were evaluated based on interfacial tension analyses, dynamic light scattering (DLS), and antitrypsin activity. Of the four synthesized d ‐GA‐derived surfactants [dihexanoyl d ‐GA sodium salt (diC6GA‐Na), dioctanoyl d ‐GA sodium salt (diC8GA‐Na), didecanoyl d ‐GA sodium salt (diC10GA‐Na), and dilauroyl d ‐GA sodium salt (diC12GA‐Na)], only those with C6, C8, and C10 acyl chains were investigated because diC12GA‐Na were insoluble at room temperature. Together with our previous results, surface tensions at the critical micelle concentration (CMC) were 33.9 mN/m for diC6GA‐Na, 25.5 mN/m for diC8GA‐Na, and 27.9 mN/m for diC10GA‐Na. Evaluation of assembly size via DLS and optical microscopy revealed that diC8GA‐Na and diC10GA‐Na formed large associates with average sizes ranging from 50 to 200 μm at concentrations 4–5 times greater than their CMC, whereas diC6GA‐Na did not form such associates. In tryptic hydrolysis studies using Nα‐benzoyl‐dl ‐arginine‐4‐nitroanilide as a substrate, diC8GA‐Na exhibited an inhibitory effect on trypsin (trypsin specific activity: 0.26 ± 0.045 U/mg‐protein) greater than that of diC10GA‐Na (0.39 ± 0.10 U/mg‐protein), whereas diC6GA‐Na did not show antitrypsin activity. These results show that diC8GA‐Na was the most bioactive of the evaluated diacyl d ‐glycerate surfactants.  相似文献   

15.
Metal nanoparticles have attracted considerable interest particularly because of the size dependence of physical and chemical properties and its enormous technological potential. Among different metal nanoparticles, copper nanoparticles have attracted great attention because copper is one of the most key metals in new technology. Chemical methods are used to synthesize copper nanoparticles. Chemical reduction is the most frequently applied method for the preparation of stable, colloidal dispersions in organic solvents. In this paper, the new cationic thiol polyurethane surfactants with different alkyl chain length were synthesized (PQ10, PQ14 and PQ18). The chemical structure of the synthesized surfactants was confirmed using infra-red spectroscopy (IR) and proton nuclear magnetic resonance spectroscopy (1HNMR). Copper nanoparticles colloidal solution of 40–80 nm diameters was prepared using sodium borohydride in aqueous solution at room temperature as reducing agent. The synthesized surfactants decrease the aggreegation of copper nanoparticles. The nanostructure of the synthesized surfactant with copper nanoparticles with diameters ranging from 31.5 to 10.3 nm was prepared and characterized using ultra violet spectrophotometer (UV), infra-red spectroscopy (IR) and transmission electron microscope (TEM). The results declare formation and stabilization of copper nanoparticle using synthesized cationic surfactants. Antimicrobial activity of the synthesized cationic surfactants and their nanostructure with copper nanoparticles were evaluated against pathogenic bacteria and fungi.  相似文献   

16.
Two environmentally friendly succinic acid monofluoroalkyl sulfonate surfactants were synthesized from maleic anhydride and polyethylene glycol mono (1H,1H,7H‐dodecafluoroheptyl) ether, i.e. H(CF2)6CH2OCH2CH2OCOCH(SO3Na)CH2COOH (FEOS‐1) and H(CF2)6CH2(OCH2CH2)3OCOCH(SO3Na)CH2COOH (FEOS‐3). The obtained surfactants were characterized by FT‐IR, 1H NMR, 13C NMR and 19F NMR in detail. The synthesized fluorinated surfactants have a high thermal stability on the basis of thermogravimetric analysis. Their surface properties were examined and the results show that FEOS‐1 and FEOS‐3 surfactants can reduce the surface tension of water to 25.55 mN m?1 at 10.25 mmol L?1 and 21.63 mN m?1 at 8.33 mmol L?1, respectively; meanwhile, the introduction of oxyethylene groups enhances the hydrophilicity and micellar forming ability and the longer oxyethylene chains the better surface properties. The Krafft points (Kp) of FEOS‐1 and FEOS‐3 were both below 0 °C, which was lower than perfluoro‐n‐heptanesulfonic acid sodium salt (n‐C7F15SO3Na, Kp = 56.5 °C) at a similar length of fluorocarbon chains. Comparison studies on two surfactants above and the conventional fluorocarbon surfactants, perfluorooctanoate of ammonium (PFOA) show that the surfactants have comparable properties to PFOA, thus offering an environmentally friendly synthesizing alternatives to PFOA.  相似文献   

17.
A novel bola‐type acrylic‐modified rosin ester tertiary ammonium salt surfactant (AETAS) with two hydrophilic groups and a rigid hydrophobic group was synthesized through a simple method from rosin acid, which is a natural raw material. The chemical structure of the synthesized surfactant was confirmed by infrared spectroscopy and nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR). The critical micelle concentration (CMC) of the AETAS was 0.44 g/L, and the surface tension at the CMC (γcmc) was 45.02 mN/m. Self‐assembly behavior of the AETAS in aqueous solution was characterized by transmission electron microscopy. The micelle diameter of the AETAS was about 150 nm in aqueous solution. We also explored the synergy of the AETAS and soapnut saponin. The binary surfactant compound systems of the AETAS and soapnut saponin had obvious synergistic effect in enhancing surface activity when the mass ratio of AETAS/soapnut saponin was 1:1. The γcmc of soapnut saponin was 47.70 mN/m when the concentration reached 0.46 g/L, but the γcmc of mixtures decreased to 44.26 mN/m at 0.30 g/L. The emulsification ability of the mixtures was significantly improved and the emulsion performance increased from 245 to 595 s when the mass ratio of AETAS/soapnut saponin was 1:1.  相似文献   

18.
In order to enhance oil recovery from high‐salinity reservoirs, a series of cationic gemini surfactants with different hydrophobic tails were synthesized. The surfactants were characterized by elemental analysis, infrared spectroscopy, mass spectrometry, and 1H‐NMR. According to the requirements of surfactants used in enhanced oil recovery technology, physicochemical properties including surface tension, critical micelle concentration (CMC), contact angle, oil/water interfacial tension, and compatibility with formation water were fully studied. All cationic gemini surfactants have significant impact on the wettability of the oil‐wet surface, and the contact angle decreased remarkably from 98° to 33° after adding the gemini surfactant BA‐14. Under the condition of solution salinity of 65,430 mg/L, the cationic gemini surfactant BA‐14 reduces the interfacial tension to 10?3 mN/m. Other related tests, including salt tolerance, adsorption, and flooding experiments, have been done. The concentration of 0.1% BA‐14 remains transparent with 120 g/L salinity at 50 °C. The adsorption capacity of BA‐14 is 6.3–11.5 mg/g. The gemini surfactant BA‐14 can improve the oil displacement efficiency by 11.09%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46086.  相似文献   

19.
In the present work, a two-step method was adopted to synthesize a series of novel Gemini surfactants using N,N-dimethylalkyl amines (alkyl length = C12, C16 and C18), epichlorohydrin, and n-phenyllenediamine as starting materials. The products were characterized using mass spectroscopy (MS) and nuclear magnetic resonance spectroscopy (1H NMR). Systematic experiments were conducted to evaluate their surface activity, foaming properties, and antibacterial performance. Results showed the critical micelle concentrations (CMC) of the C12-based, C16-based, and C18-based phenylenediamine surfactants were 3.295 × 10−3, 2.532 × 10−4, and 3.140 × 10−4 mol L−1 at 298 K, respectively, with corresponding surface tension (γcmc) values of 28.24, 31.95, and 35.06 mN m−1 under the same conditions. The Gemini surfactants showed not only good surface activity and foaming properties, but also demonstrated good antimicrobial performance against Gram-positive and Gram-negative bacteria and fungi.  相似文献   

20.
Ferrocene-based nonionic surfactants were synthesized by reacting ferrocenylcarboxyaldehyde with different long-chain amines. Nonionic surfactants were characterized using Fourier transform infrared spectra (FT-IR), 1HNMR, and 13CNMR spectroscopy. The ferrocene-based surfactants were characterized using ultraviolet (UV)–visible spectroscopy and surface tension measurements to determine the critical micelle concentration (CMC). The CMC values indicate high aggregation ability of the synthesized surfactants in ethanol. Dominance of their hydrophilic character was ensured from hydrophilic–lipophilic balance in the 10–15 range. Voltammetric response of all surfactants showed well-defined and stable redox signals. Computational studies further revealed their physicochemical characteristics. Results of the study confirm the multifunctionality of the surfactants and suggest utilization in various fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号