首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peroxisome proliferator‐activated receptor (PPAR)α is mainly expressed in the liver and plays an important role in the regulation of lipid metabolism. It has been reported that PPARα activation enhances fatty acid oxidation and reduces fat storage. Therefore, PPARα agonists are used to treat dyslipidemia. In the present study, we found that 9‐oxo‐10(E),12(Z),15(Z)‐octadecatrienoic acid (9‐oxo‐OTA), which is a α‐linolenic acid (ALA) derivative, is present in tomato (Solanum lycopersicum) extract. We showed that 9‐oxo‐OTA activated PPARα and induced the mRNA expression of PPARα target genes in murine primary hepatocytes. These effects promoted fatty acid uptake and the secretion of β‐hydroxybutyrate, which is one of the endogenous ketone bodies. We also demonstrated that these effects of 9‐oxo‐OTA were not observed in PPARα‐knockout (KO) primary hepatocytes. To our knowledge, this is the first study to report that 9‐oxo‐OTA promotes fatty acid metabolism via PPARα activation and discuss its potential as a valuable food‐derived compound for use in the management of dyslipidemia.  相似文献   

2.
3.
Adipocyte differentiation plays a pivotal role in maintaining the production of small‐size adipocytes with insulin sensitivity, and impaired adipogenesis is implicated in insulin resistance. 4‐Hydroxyderricin (4‐HD), a phytochemical component of Angelica keiskei, possesses diverse biological properties such as anti‐inflammatory, antidiabetic, and antitumor. In the present study, we investigated the effects of 4‐HD on adipocyte differentiation. 4‐HD promoted lipid accumulation in 3T3‐L1 cells, upregulated both peroxisome proliferator‐activated receptor (PPAR)‐γ mRNA and protein expression, and acted as a ligand for PPARγ in the luciferase assay. Moreover, 4‐HD increased the mRNA and protein expression levels of adiponectin. Additionally, it promoted insulin‐dependent glucose uptake into 3T3‐L1 adipocytes and increased Akt phosphorylation and glucose transporter (GLUT) 4 mRNA expression. In summary, these findings suggest that 4‐HD, which promoted adipogenesis and insulin sensitivity in 3T3‐L1 cells, might be a phytochemical with potent insulin‐sensitizing effects.  相似文献   

4.
An enzyme from the alga Chlorella pyrenoidosa, previously identified as a hydroperoxide lyase (HPLS), cleaves the 13‐hydroperoxide derivatives of linoleic and linolenic acids into a volatile C5 fragment and a C13 oxo‐product, 13‐oxo‐9(Z),11(E)tridecadienoic acid (13‐OTA). Gas chromatography/mass spectrometry (GC/MS) headspace analysis of the volatile products indicated the formation of pentane when the substrate was the 13‐hydroperoxide derivative of linoleic acid, whereas a more complex mixture of hydrocarbons was formed when the 13‐hydroperoxide derivative of linolenic acid was the substrate. Analysis of the nonvolatile products by GC/MS and liquid chromatography/mass spectrometry (LC/MS) indicated the formation of 13‐OTA along with the 13‐ketone derivative. This enzymatic activity was inhibited by oxygen but was restored with nitrogen. The enzymatic cleavage activity was coincidental in purified fractions with lipoxygenase activity that produced the 13‐ and 9‐hydroperoxide derivatives of linolenic acid. The results suggest that the enzymatic cleavage activity in Chlorella pyrenoidosa was not a consequence of hydroperoxide lyase activity as previously thought, but was due to anaerobic lipoxygenase activity. This enzyme fraction was purified by (NH4)2 SO4 precipitation, gel filtration, and hydrophobic interaction chromatography. The purified enzyme has an approximate MW of 120 KDa and maximum activity at pH 8.0.  相似文献   

5.
Whole cells of recombinant Escherichia coli expressing diol synthase from Aspergillus nidulans produced 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid from α‐linolenic acid via 8‐hydroperoxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid as an intermediate. The optimal conditions for 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid production using whole recombinant cells were exhibited at pH 7.0, 40 °C, and 250 rpm with 40 g/L cells, 12 g/L, α‐linolenic acid, and 5 % (v/v) dimethyl sulfoxide in a 250‐mL baffled flask containing 50 mL reaction solution. Under these conditions, whole recombinant cells produced 9.1 g/L 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid for 100 min, with a conversion yield of 75 % (w/w), a volumetric productivity of 5.5 g/L/h, and specific productivity of 137 mg/g‐cells/h. As an intermediate, 8‐hydroperoxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid was observed at approximately 1.4 g/L after 100 min. With regard to dihydroxy fatty acid production, this is the highest reported volumetric and specific productivities thus far. This is the first report on the biotechnological production of 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid.  相似文献   

6.
PPARγ agonist DIM‐Ph‐4‐CF 3 , a template for RXRα agonist (E)‐3‐[5‐di(1‐methyl‐1H‐indol‐3‐yl)methyl‐2‐thienyl] acrylic acid: DIM‐Ph‐CF3 is reported to inhibit cancer growth independent of PPARγ and to interact with NR4A1. As both receptors dimerize with RXR, and natural PPARγ ligands activate RXR, DIM‐Ph‐4‐CF3 was investigated as an RXR ligand. It displaces 9‐cis‐retinoic acid from RXRα but does not activate RXRα. Structure‐based direct design led to an RXRα agonist.

  相似文献   


7.
Macrophage apoptosis, a key process in atherogenesis, is regulated by oxidation products, including hydroxyoctadecadienoic acids (HODEs). These stable oxidation products of linoleic acid (LA) are abundant in atherosclerotic plaque and activate PPARγ and GPR132. We investigated the mechanisms through which HODEs regulate apoptosis. The effect of HODEs on THP‐1 monocytes and adherent THP‐1 cells were compared with other C18 fatty acids, LA and α‐linolenic acid (ALA). The number of cells was reduced within 24 hours following treatment with 9‐HODE (p < 0.01, 30 μM) and 13 HODE (p < 0.01, 30 μM), and the equivalent cell viability was also decreased (p < 0.001). Both 9‐HODE and 13‐HODE (but not LA or ALA) markedly increased caspase‐3/7 activity (p < 0.001) in both monocytes and adherent THP‐1 cells, with 9‐HODE the more potent. In addition, 9‐HODE and 13‐HODE both increased Annexin‐V labelling of cells (p < 0.001). There was no effect of LA, ALA, or the PPARγ agonist rosiglitazone (1μM), but the effect of HODEs was replicated with apoptosis‐inducer camptothecin (10μM). Only 9‐HODE increased DNA fragmentation. The pro‐apoptotic effect of HODEs was blocked by the caspase inhibitor DEVD‐CHO. The PPARγ antagonist T0070907 further increased apoptosis, suggestive of the PPARγ‐regulated apoptotic effects induced by 9‐HODE. The use of siRNA for GPR132 showed no evidence that the effect of HODEs was mediated through this receptor. 9‐HODE and 13‐HODE are potent—and specific—regulators of apoptosis in THP‐1 cells. Their action is PPARγ‐dependent and independent of GPR132. Further studies to identify the signalling pathways through which HODEs increase apoptosis in macrophages may reveal novel therapeutic targets for atherosclerosis.  相似文献   

8.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine hydrolase that catalyzes the hydrolysis of endogenous lipid mediators such as palmitoylethanolamide (PEA). PEA has been shown to exert anti‐inflammatory and antinociceptive effects in animals by engaging peroxisome proliferator‐activated receptor α (PPAR‐α). Thus, preventing PEA degradation by inhibiting NAAA may provide a novel approach for the treatment of pain and inflammatory states. Recently, 3‐aminooxetan‐2‐one compounds were identified as a class of highly potent NAAA inhibitors. The utility of these compounds is limited, however, by their low chemical and plasma stabilities. In the present study, we synthesized and tested a series of N‐(2‐oxoazetidin‐3‐yl)amides as a novel class of NAAA inhibitors with good potency and improved physicochemical properties, suitable for systemic administration. Moreover, we elucidated the main structural features of 3‐aminoazetidin‐2‐one derivatives that are critical for NAAA inhibition.  相似文献   

9.
The energetic material, 3‐nitro‐1,5‐bis(4,4′‐dimethyl azide)‐1,2,3‐triazolyl‐3‐azapentane (NDTAP), was firstly synthesized by means of Click Chemistry using 1,5‐diazido‐3‐nitrazapentane as main material. The structure of NDTAP was confirmed by IR, 1H NMR, and 13C NMR spectroscopy; mass spectrometry, and elemental analysis. The crystal structure of NDTAP was determined by X‐ray diffraction. It belongs to monoclinic system, space group C2/c with crystal parameters a=1.7285(8) nm, b=0.6061(3) nm, c=1.6712(8) nm, β=104.846(8)°, V=1.6924(13) nm3, Z=8, μ=0.109 mm−1, F(000)=752, and Dc=1.422 g cm−3. The thermal behavior and non‐isothermal decomposition kinetics of NDTAP were studied with DSC and TG‐DTG methods. The self‐accelerating decomposition temperature and critical temperature of thermal explosion are 195.5 and 208.2 °C, respectively. NDTAP presents good thermal stability and is insensitive.  相似文献   

10.
Probing SAR : The 1‐(biphenyl‐4‐ylmethyl)‐1H‐benzo[d]imidazole moiety is known to be an essential structural component of telmisartan for PPARγ activation. This study focused on the substituents at position 2 of the benzimidazole in an attempt to optimize PPARγ activation. In particular, the elongation of the alkyl chain and the introduction of an aromatic ring system were studied (shown).

  相似文献   


11.
Selective modulation of the peroxisome proliferator‐activated receptor gamma (PPARγ) by direct binding of small molecules demonstrates a promising tool for treatment of insulin resistance and type 2 diabetes mellitus. Besides its blood pressure‐lowering properties, the AT1‐receptor blocker telmisartan has been shown to be a partial agonist of PPARγ with beneficial metabolic effects in vitro and in mice. In our previous work, comprehensive structure–activity relationship (SAR) studies discussed the different parts of the telmisartan structure and various moieties. Based on these findings, we designed and synthesized new PPARγ ligands with a benzimidazole (agonists 4 ‐ 5 and 4 ‐ 6 ), benzothiophene (agonists 5 ‐ 5 and 5 ‐ 6 ) or benzofuran (agonists 6 ‐ 5 and 6 ‐ 6 ) moiety either at position 5 or 6 of the benzimidazole core structure. Lipophilicity and EC50 values were improved for all new compounds compared with telmisartan. Regarding PPARγ activation, the compounds were characterized by a differentiation assay using 3T3‐L1 cells and a luciferase assay with COS‐7 cells transiently transfected with pGal4‐hPPARgDEF, pGal5‐TK‐pGL3 and pRL‐CMV. A decrease in both potency and efficacy was observed after the shift of either the benzothiophene or the benzofuran moiety from position 6 to position 5. Selective recruitment of the coactivators TRAP220, SRC‐1 and PGC‐1α, and release of corepressor NCoR1 determined by time‐resolved fluorescence resonance energy transfer (TR‐FRET) was detected depending on residues in position 5 or 6.  相似文献   

12.
Polyfunctional molecules, 1,5‐enynes, have been achieved via a palladium(0)‐catalyzed domino coupling reaction of (Z)‐β‐bromostyrenes with norbornenes in the presence of cesium carbonate and N,N‐dimethylformamide. The process involves a double Heck‐type procedure, two‐fold C(sp2) H activation and formation of two carbon‐carbon bonds. There are possibilities of diversified transformation for the domino coupling of (Z)‐β‐bromostyrenes with norbornenes, the procedure is successfully driven to 1,5‐enynes via accurate adjustment of the reaction conditions.

  相似文献   


13.
Based on 3‐(((4‐(hexylamino)‐2‐methoxyphenyl)amino)sulfonyl)‐2‐thiophenecarboxylic acid methyl ester (ST247, compound 2 ), a recently described peroxisome proliferator‐activated receptor (PPAR)β/δ‐selective inverse agonist, we designed and synthesized a series of structurally related ligands. The structural modifications presented herein ultimately resulted in a series of ligands that display increased cellular activity relative to 2 . Moreover, with methyl 3‐(N‐(2‐(2‐ethoxyethoxy)‐4‐(hexylamino)phenyl)sulfamoyl)thiophene‐2‐carboxylate (PT‐S264, compound 9 u ), biologically relevant plasma concentrations in mice were achieved. The compounds presented in this study will provide useful novel tools for future investigations addressing the role of PPARβ/δ in physiological and pathophysiological processes.  相似文献   

14.
(Z)‐3‐((3‐hydroxybenzylidene)amino)pyridin‐1‐ium4‐dodecylbenzenesulfonate anionic surfactant and its cobalt, copper and zinc complexes were synthesized (I, I‐Co, I‐Cu and I‐Zn). The chemical structures of it were characterized by elemental analysis, FTIR, 1H‐NMR, UV–Vis spectroscopy and atomic adsorption. The effects of the chemical structures of the synthesized anionic surfactant and the type of transition metals on the surface activity are presented in this paper. The thermodynamic parameters show that adsorption and micellization processes are spontaneous. The results of biological activity measurements showed that the synthesized compounds have a great efficiency against gram positive (Bacillus subtilis and Staphylococcus aureus), gram‐ negative bacteria (Pseudomonas aeruginosa and Escherichia coli) and fungi (Candida albicans and Aspergillus niger) as well as the sulfate reducing bacteria (Desulfomonas pigra). The complexation of the anionic surfactant with Co2+, Cu2+ and Zn2+ increase the antimicrobial activity values.  相似文献   

15.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator‐activated receptor‐α (PPAR‐α). Compounds that feature an α‐amino‐β‐lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti‐inflammatory effects that are mediated through FAE‐dependent activation of PPAR‐α. We synthesized and tested a series of racemic, diastereomerically pure β‐substituted α‐amino‐β‐lactones, as either carbamate or amide derivatives, investigating the structure–activity and structure–stability relationships (SAR and SSR) following changes in β‐substituent size, relative stereochemistry at the α‐ and β‐positions, and α‐amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β‐position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.  相似文献   

16.
The title compounds were prepared by six different routes, and recommendations are given for the more convenient procedures in laboratory-scale syntheses. Modifications in the literature preparations of the 9E,11E and 9E,11Z isomers are described. Baseline separation of a prepared mixture of all four isomers of the (9Z, 11Z), (9E, 11E), (9E, 11Z), and (9Z, 11E)-9,11-hexadecadienals was achieved using GC methods with standard capillary columns. [13C]NMR spectroscopy of the alkene carbon atoms clearly differentiates between theZ,Z, E,E and eitherE,Z orZ,E isomers of the precursor dienols and thus of the dienals.  相似文献   

17.
The reaction conditions for the conversion of 6‐endo‐tosyloxybicyclo[2.2.2]octan‐2‐one ( 7b ) into 6‐exo‐acetoxy ( 8b ) and 6‐exo‐benzoyloxybicyclo[2.2.2]octan‐2‐one ( 8a ), respectively, were improved. Thus known 6‐endo‐tosyloxy‐bicyclo[2.2.2]octan‐2‐ones (+)‐(1RS,6SR,8SR,11RS)‐11‐[(4‐toluenesulfonyl)oxy]tricyclo[6.2.2.01,6]dodecan‐9‐one ( 1a ), 13‐methyl‐15‐oxo‐9β,13b‐ethano‐9β‐podocarpan‐12β‐yl‐4‐toluenesulfonate ( 3a ), and methyl (13R)‐16‐oxo‐13‐[(4‐tolylsulfonyl)oxy]‐17‐noratisan‐18‐oate ( 5 ), were converted,in comparable yields, as previously recorded, but much shorter times, into (+)‐(1RS,6SR,8SR,11SR)‐11‐(benzoyloxy) tricyclo[6.2.2.01,6]dodecan‐9‐one ( 2 ), 13‐methyl‐15‐oxo‐9β,13β‐ethano‐9β‐podocarpan‐12α‐yl benzoate ( 4 ), and methyl (13S)‐13‐(benzoyloxy)‐16‐oxo‐17‐noratisan‐18‐oate ( 6 ), respectively.  相似文献   

18.
The nuclear retinoic acid receptor‐related orphan receptor γ (RORγ; NR1F3) is a key regulator of inflammatory gene programs involved in T helper 17 (TH17) cell proliferation. As such, synthetic small‐molecule repressors (inverse agonists) targeting RORγ have been extensively studied for their potential as therapeutic agents for various autoimmune diseases. Alternatively, enhancing TH17 cell proliferation through activation (agonism) of RORγ may boost an immune response, thereby offering a potentially new approach in cancer immunotherapy. Herein we describe the development of N‐arylsulfonyl indolines as RORγ agonists. Structure–activity studies reveal a critical linker region in these molecules as the major determinant for agonism. Hydrogen/deuterium exchange coupled to mass spectrometry (HDX‐MS) analysis of RORγ–ligand complexes help rationalize the observed results.  相似文献   

19.
An efficient and divergent one‐pot synthesis of substituted 2H‐pyrans, 4H‐pyrans and pyridin‐2(1H)‐ones from β‐oxo amides based on the selection of the reaction conditions is reported. Mediated by N,N,N′,N′‐tetramethylchloroformamidinium chloride, β‐oxo amides underwent intermolecular cyclizations in the presence of triethylamine at room temperature to give substituted 2H‐pyrans in high yields, which could be converted into substituted 4H‐pyrans in the presence of sodium hydroxide in ethanol at room temperature, or into substituted pyridin‐2(1 H)‐ones under reflux.  相似文献   

20.
Dr. Gilles Ouvry  Dr. Nicolas Atrux‐Tallau  Dr. Franck Bihl  Aline Bondu  Dr. Claire Bouix‐Peter  Isabelle Carlavan  Olivier Christin  Marie‐Josée Cuadrado  Dr. Claire Defoin‐Platel  Dr. Sophie Deret  Denis Duvert  Christophe Feret  Mathieu Forissier  Dr. Jean‐François Fournier  David Froude  Dr. Fériel Hacini‐Rachinel  Dr. Craig Steven Harris  Dr. Catherine Hervouet  Dr. Hélène Huguet  Guillaume Lafitte  Dr. Anne‐Pascale Luzy  Dr. Branislav Musicki  Danielle Orfila  Benjamin Ozello  Coralie Pascau  Jonathan Pascau  Véronique Parnet  Guillaume Peluchon  Romain Pierre  Dr. David Piwnica  Dr. Catherine Raffin  Patricia Rossio  Delphine Spiesse  Dr. Nathalie Taquet  Dr. Etienne Thoreau  Rodolphe Vatinel  Dr. Emmanuel Vial  Dr. Laurent François Hennequin 《ChemMedChem》2018,13(4):321-337
With possible implications in multiple autoimmune diseases, the retinoic acid receptor‐related orphan receptor RORγ has become a sought‐after target in the pharmaceutical industry. Herein are described the efforts to identify a potent RORγ inverse agonist compatible with topical application for the treatment of skin diseases. These efforts culminated in the discovery of N‐(2,4‐dimethylphenyl)‐N‐isobutyl‐2‐oxo‐1‐[(tetrahydro‐2H‐pyran‐4‐yl)methyl]‐2,3‐dihydro‐1H‐benzo[d]imidazole‐5‐sulfonamide (CD12681), a potent inverse agonist with in vivo activity in an IL‐23‐induced mouse skin inflammation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号