首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneous catalysts are promising for the transesterification reaction of vegetable oils to produce biodiesel. Unlike homogeneous, heterogeneous catalysts are environmentally benign and could be operated in continuous processes. Moreover they can be reused and regenerated. However a high molar ratio of alcohol to oil, large amount of catalyst and high temperature and pressure are required when utilizing heterogeneous catalyst to produce biodiesel. In this paper, the catalytic activity of several solid base and acid catalysts, particularly metal oxides and supported metal oxides, was reviewed. Solid acid catalysts were able to do transesterification and esterification reactions simultaneously and convert oils with high amount of FFA (Free Fatty Acids). However, the reaction rate in the presence of solid base catalysts was faster. The catalyst efficiency depended on several factors such as specific surface area, pore size, pore volume and active site concentration.  相似文献   

2.
A solid Brønsted acid of amorphous carbon bearing SO3H, COOH and phenolic OH groups has been studied as a catalyst for biodiesel production. The carbon material functions as a stable and efficient catalyst for the formation of biodiesel from oleic acid at 353 K; the catalytic performance is 70–80% that of sulfuric acid. The carbon material also exhibits remarkable catalytic performance for transesterification of triolein at 403 K, maintaining high catalytic activity even in the presence of water. These results suggest that this catalyst can directly convert crude vegetable oils composed of triglycerides, free higher fatty acids and water into biodiesel with minimal energy consumption.  相似文献   

3.
The transesterification of karanja oil with methanol was carried out using solid basic catalysts. Alkali metal‐impregnated calcium oxide catalysts, due to their strong basicity, catalyze the transesterification of triacylglycerols. The alkali metal (Li, Na, K)‐doped calcium oxide catalysts were prepared and used for the transesterification of karanja oil containing 0.48–5.75% of free fatty acids (FFA). The reaction conditions, such as catalyst concentration, reaction temperature and molar ratio of methanol/oil, were optimized with the solid basic Li/CaO catalyst. This catalyst, at a concentration of 2 wt‐%, resulted in 94.9 wt‐% of methyl esters in 8 h at a reaction temperature of 65 °C and a 12 : 1 molar ratio of methanol to oil, during methanolysis of karanja oil having 1.45% FFA. The yield of methyl esters decreased from 94.9 to 90.3 wt‐% when the FFA content of karanja oil was increased from 0.48 to 5.75%. The performance of this catalyst was not significantly affected in the presence of a high FFA content up to 5.75%. The catalytic activities of Na/CaO and K/CaO were also studied at the optimized reaction conditions. In these two cases, the reaction initially proceeds slowly, however, leading to similar yields as in the case of Li/CaO after 8 h of reaction time. The purified karanja methyl esters have an acid value of 0.36 mg KOH/g and an ester content of 98.6 wt‐%, which satisfy the American as well as the European specifications for biodiesel in terms of acid value and ester content.  相似文献   

4.
A high quality biodiesel was produced from Mexican Jatropha curcas crude oil (JCCO) by a two step catalyzed process. The free fatty acids (FFA) were first esterified with methanol, catalyzed by a solid catalyst: SiO2 pretreated with HF. The catalyst showed a high number of Lewis acid surface sites, and no CO2 or H2O adsorption activity. This catalyst showed a high FFA esterification activity and high stability. After 30 esterification runs, the catalyst activity remained unchanged. During the second step, the triglycerides present in the JCCO were transesterified with methanol catalyzed by NaOH. The chromatographic analysis of the biodiesel obtained, revealed that the process proposed in this investigation led to a very high quality biodiesel, meeting the international requirements for its utilization as a fuel. The combustion gas emissions of the JCCO biodiesel were studied by FTIR spectroscopy using a laboratory combustor. These preliminary results showed low amounts of aromatic and sulfur containing compounds. However, halogenated compounds and dicyclopentadiene were also detected at the combustor exhaust.  相似文献   

5.
Biodiesel production from high FFA rubber seed oil   总被引:7,自引:0,他引:7  
Currently, most of the biodiesel is produced from the refined/edible type oils using methanol and an alkaline catalyst. However, large amount of non-edible type oils and fats are available. The difficulty with alkaline-esterification of these oils is that they often contain large amounts of free fatty acids (FFA). These free fatty acids quickly react with the alkaline catalyst to produce soaps that inhibit the separation of the ester and glycerin. A two-step transesterification process is developed to convert the high FFA oils to its mono-esters. The first step, acid catalyzed esterification reduces the FFA content of the oil to less than 2%. The second step, alkaline catalyzed transesterification process converts the products of the first step to its mono-esters and glycerol. The major factors affect the conversion efficiency of the process such as molar ratio, amount of catalyst, reaction temperature and reaction duration is analyzed. The two-step esterification procedure converts rubber seed oil to its methyl esters. The viscosity of biodiesel oil is nearer to that of diesel and the calorific value is about 14% less than that of diesel. The important properties of biodiesel such as specific gravity, flash point, cloud point and pour point are found out and compared with that of diesel. This study supports the production of biodiesel from unrefined rubber seed oil as a viable alternative to the diesel fuel.  相似文献   

6.
探讨了SO2-4/Fe2O3固体酸催化剂的最佳制备条件,将其用于催化合成生物柴油,考察了催化剂用量、反应温度、反应时间及醇酸摩尔比对酯化反应的影响.结果表明,当浸渍硫酸浓度为0.5 mol·L-1、焙烧温度为600℃、焙烧时间为3 h时催化剂活性最强;利用自制的固体酸催化剂催化合成生物柴油,在催化剂用量为3%(以油酸质...  相似文献   

7.
The free fatty acids (FFAs) of waste cooking oil (WCO) are readily esterified with crude glycerol in the presence of the solid superacid SO/ZrO2–Al2O3. This reaction lowers the acidity of WCO before biodiesel production. The solid superacid SO/ZrO2–Al2O3 catalyzes both FFA esterification and TAG glycerolysis during the reaction. The conversion of FFA in the WCO with an acid value of 88.4 ± 0.5 mg KOH/g to acylglycerols was 98.4% under optimal conditions (mole ratio of glycerol to FFA = 1.4:1; reaction time = 4 h; reaction temperature = 200°C; catalyst loading = 0.3 wt%) obtained through an orthogonal experiment. The final FAME product with a FAME content of 96.9 ± 0.3 wt% yield was 94.8 wt%, after transesterification of the esterified WCO with methanol, catalyzed by potassium hydroxide. The FAME composition of the products produced by transesterification were identified and quantified by GC–MS. The results suggest that this new glycerol esterification process, using a solid superacid catalyst, affords a promising method to convert oils with high FFA levels, like WCO, to biodiesel. The process has the inherent advantage of easy separation steps for removing excess alcohol and significant savings in energy, when compared to acid catalyzed reactions with methanol to lower acidity. Practical applications : In this work, WCO with a high acid value was esterified with crude glycerol catalyzed by solid super acid, whose formula was expressed as SO/ZrO2–Al2O3. There are distinct advantages to this new esterification process, which include easy separation of the excess crude glycerol by sedimentation or centrifugation, the use of the low cost reactant crude glycerol direct from the byproducts of transesterification, the potential to achieve a very low content of FFAs by post‐refining to improve the yield of the final product, and time and energy saving are found as compared to the traditional methanol esterification process. This new technology provides a promising alternative method for processing feedstocks of high acid value, such as WCO, for the production of biodiesel.  相似文献   

8.
SO42-/Fe2O3固体酸的制备及其催化合成生物柴油的研究   总被引:2,自引:0,他引:2  
探讨了SO42-/Fe2O3固体酸催化剂的最佳制备条件,将其用于催化合成生物柴油,考察了催化剂用量、反应温度、反应时间及醇酸摩尔比对酯化反应的影响。结果表明,当浸渍硫酸浓度为0.5mol·L-1、焙烧温度为600℃、焙烧时间为3h时催化剂活性最强;利用自制的固体酸催化剂催化合成生物柴油,在催化剂用量为3%(以油酸质量计)、反应温度为70℃、反应时间为2h、甲醇与油酸摩尔比为2∶1的最佳反应条件下,酯化率为63.2%。  相似文献   

9.
Junhua Zhang  Shangxing Chen  Yuanyuan Yan 《Fuel》2010,89(10):2939-2944
Zanthoxylum bungeanum seed oil (ZSO) with high free fatty acids (FFA) can be used for biodiesel production by ferric sulfate-catalyzed esterification followed by transesterification using calcium oxide (CaO) as an alkaline catalyst. Acid value of ZSO with high FFA can be reduced to less than 2 mg KOH/g by one-step esterification with methanol-to-FFA molar ratio 40.91:1, ferric sulfate 9.75% (based on the weight of FFA), reaction temperature 95 °C and reaction time 2 h, which satisfies transesterification using an alkaline catalyst. The response surface methodology (RSM) was used to optimize the conditions for ZSO biodiesel production using CaO as a catalyst. A quadratic polynomial equation was obtained for biodiesel conversion by multiple regression analysis and verification experiments confirmed the validity of the predicted model. The optimum combination for transesterification was methanol-to-oil molar ratio 11.69:1, catalyst amount 2.52%, and reaction time 2.45 h. At this optimum condition, the conversion to biodiesel reached above 96%. This study provided a practical method to biodiesel production from raw feedstocks with high FFA with high reaction rate, less corrosion, less toxicity, and less environmental problems.  相似文献   

10.
A study was undertaken to prepare biodiesel via two-step process using ionic liquid as first step catalyst due to the unsuitability of using the straight alkaline-catalyzed transesterification of high FFA presented in crude palm oil (CPO). In the first step, esterification of the FFA presented in the CPO was carried out using butylimidazolium hydrogen sulfate (BIMHSO4), in which the acid value was reduced from 6.93 to 1.02mg KOH/g and then, KOH-catalyzed transesterification was applied. The conversion rate of FFA attained 85.3% when 4.8 wt% of BIMHSO4 was applied to the reaction system containing methanol to CPO ratio of 12: 1 reacted at 170 °C for 150min. The final yield in 97.3% revealed that the process proposed in this study could lead to an excellent biodiesel meeting the ASTM requirements. Furthermore, this new two-step catalysis process could solve the old conventional catalysis process drawbacks.  相似文献   

11.
Biodiesel is the main alternative to fossil diesel and it may be produced from different feedstocks such as semi-refined vegetable oils, waste frying oils or animal fats. However, these feedstocks usually contain significant amounts of free fatty acids (FFA) that make them inadequate for the direct base catalyzed transesterification reaction (where the FFA content should be lower than 4%). The present work describes a possible method for the pre-treatment of oils with a high content of FFA (20 to 50%) by esterification with glycerol. In order to reduce the FFA content, the reaction between these FFA and an esterification agent is carried out before the transesterification reaction. The reaction kinetics was studied in terms of its main factors such as temperature, % of glycerin excess, % of catalyst used, stirring velocity and type of catalyst used. The results showed that glycerolysis is a promising pre-treatment to acidic oils or fats (> 20%) as they led to the production of an intermediary material with a low content of FFA that can be used directly in the transesterification reaction for the production of biodiesel.  相似文献   

12.
Y.C. Sharma  Bhaskar Singh 《Fuel》2010,89(7):1470-1474
Kusum (Schleichera triguga), a non-edible oil bearing plant has been used as an ideal feedstock for biodiesel development in the present study. Various physical and chemical parameters of the raw oil and the fatty acid methyl esters derived have been tested to confirm its suitability as a biodiesel fuel. The fatty acid component of the oil was tested by gas chromatography. The acid value of the oil was determined by titration and was found to 21.30 mg KOH/g which required two step transesterification. Acid value was brought down by esterification using sulfuric acid (H2SO4) as a catalyst. Thereafter, alkaline transesterification was carried out using potassium hydroxide (KOH) as catalyst for conversion of kusum oil to its methyl esters. Various parameters such as molar ratio, amount of catalyst and reaction time were optimized and a high yield (95%) of biodiesel was achieved. The high conversion of the feedstock into esters was confirmed by analysis of the product on gas chromatograph-mass spectrometer (GC-MS). Viscosity and acid value of the product biodiesel were determined and found to be within the limits of ASTM D 6751 specifications. Elemental analysis of biodiesel showed presence of carbon, hydrogen, oxygen and absence of nitrogen and sulfur after purification. Molar ratio of methanol to oil was optimized and found to be 10:1 for acid esterification, and 8:1 for alkaline transesterification. The amounts of H2SO4 and KOH, 1% (v/v) and 0.7% (w/w), respectively, were found to be optimum for the reactions. The time duration of 1 h for acid esterification followed by another 1 h for alkaline transesterification at 50 ± 0.5 °C was optimum for synthesis of biodiesel.  相似文献   

13.
The feasibility of the production of biodiesel from trap grease containing 51.5% free fatty acids (FFAs) was investigated. The esterification of FFAs by an acid catalyst followed by the transesterification of triglycerides by an alkali catalyst was examined. The esterification of trap grease by sulfuric acid as a homogeneous catalyst or by Amberlyst-15 as a heterogeneous catalyst was optimized through a response surface methodology. After the two-step esterification of trap grease by sulfuric acid, the acid value decreased from 102.9 mg KOH/g to 2.75 mg KOH/g. Through the transesterification by potassium hydroxide, fatty acid methyl ester (FAME) content reached 92.4%. Following the esterification of trap grease by Amberlyst-15, the acid value decreased to 3.23 mg KOH/g. With the transesterification by potassium hydroxide, FAME content increased to 94.1%. After the distillation of the produced biodiesel, FAME content increased again, to 97.6%. The oxidation stability of the trap grease biodiesel was 0.17 h, and its cold filter plugging point was 4 °C. As the FAME content of the trap grease biodiesel satisfies the Korean Biodiesel Standard, the trap grease biodiesel seems to be applicable for use as an engine fuel after properties improvement.  相似文献   

14.
Oil transesterification over calcium oxides modified with lanthanum   总被引:2,自引:0,他引:2  
Investigations were conducted on a series of calcium and lanthanum oxides catalyst for biodiesel production. Mixed oxides catalyst showed a superior transesterification activity over pure calcium or pure lanthanum oxide catalysts. The catalyst activity was correlated with surface basicity and specific surface areas. The effects of water and free fatty acids (FFA) levels in oil feedstock, water and CO2 in air, mass ratio of catalyst, molar ratio of oil to methanol, and reaction temperature on fatty acid methyl ester (FAME) yield were investigated. Under optimal conditions, FAME yields reached 94.3% within 60 min at 58 °C. Mixed CaO-La2O3 catalyst showed a high tolerance to water and FFA, and could be used for converting pure or diluted unrefined/waste oils to biodiesel.  相似文献   

15.
In this study, SnCl4 was chosen as a solid catalyst for esterification of free fatty acids (FFA) in Zanthoxylum bungeanum seed oil (ZSO). A central composite rotatable design was used to investigate the effect of the methanol-to-oil molar ratio, catalyst amount and reaction time on the SnCl4-catalyzed esterification of FFA. The methanol-to-oil molar ratio and reaction time clearly affected the conversion efficiency of FFA in the test ranges. Response surface methodology was used to optimize the conditions for SnCl4-catalyzed esterification. A quadratic polynomial equation was obtained for conversion efficiency of FFA by multiple regression analysis and verification experiments confirmed the validity of the predicted model. Under the optimum conditions, the conversion efficiency of FFA in vegetable oil reached above 96 %. This study demonstrates the effectiveness of SnCl4 as an acid catalyst for the reduction of high FFA content in vegetable oils to a low level by one-step esterification.  相似文献   

16.
Trifluoromethanesulfonic acid (TFMSA) was used to reduce the high free fatty acids (FFA) content in sludge palm oil (SPO). The FFA content of SPO was converted to fatty acid methyl ester (FAME) via esterification reaction. The treated sludge palm oil was used as a raw material for biodiesel production by transesterification process. Several working parameters were optimized, such as dosage of catalyst, molar ratio, reaction temperature and time. Less than 2% of the FFA content was the targeted value. The results showed that the FFA content of SPO was reduced from 16% to less than 2% using the optimum conditions. The yield of the final product after the alkaline transesterification was 84% with 0.07% FFA and the ester content was 96.7%. All other properties met the international standard specifications for biodiesel quality such as EN 14214 and ASTM D6751.  相似文献   

17.
Lewis acid catalysts are active for both esterification and transesterification, but the reaction is very slow due to mass-transfer limitations between methanol and oil phase. Because oil, FFA and Lewis acid catalysts are all soluble in the subcritical methanol phase, the esterification and transesterification will be enhanced when they are carried out under subcritical conditions. In this work, the esterification and transesterification of high FFA oil to biodiesel via Lewis acid catalysts such as Pb(OOCCH3)2, Cd(OOCCH3)2 and Zn(OOCCH3)2 were carried out in the subcritical methanol phase (2 MPa, 180°C, reaction time 30 min). The results show that the esterification conversion reaches 79.8-96.4% with Palmitic acid as feedstock, and the transesterification conversion reaches 56.8-73.4% with soybean oil as feedstock. With the mixture of Soybean oil and Palmitic acid (FFA content of 20.3 wt%) as feedstock, the content of fatty acid methyl esters (FAME) in products reaches 67.3-83.4%.  相似文献   

18.
The catalytic activity of different heterogeneous sulfonic acid-modified catalysts has been assayed in the simultaneous esterification of FFA and transesterification of triglycerides of crude palm oil (FFA content of 5.6 wt%) with methanol, demonstrating the applicability of this kind of acid solids to the one-step production of biodiesel from FFA-containing vegetable oils. The yield towards fatty acid methyl esters (FAMEs) obtained over these acid materials is enhanced when increasing the acid strength of the catalytic site. Likewise, the use of mesostructured supports has been shown as a factor improving the catalytic performance as compared with macroporous sulfonic acid-based resins, likely due to an enhancement of the mass transfer rates of large molecules, such as triglycerides, within the catalyst structure. Thus, the combination of the open mesoporous structure of a SBA-15 silica support with relatively strong arenesulfonic acid sites leads to a material able to yield high conversion of triglycerides and free fatty acids. Furthermore, a study on the transesterification reaction of crude palm oil with methanol through a surface response analysis has provided as optimal conditions the following: temperature 160 °C, catalyst loading 5.1 wt% referred to the amount of palm oil, and methanol to oil molar ratio 30. Under these conditions, almost 90% of the starting oil is converted to FAME after reacting for just 2 h of reaction. Likewise, surface response analysis has evidenced a strong interaction between temperature and methanol to oil ratio.  相似文献   

19.
马利  洪建兵  甘孟瑜  岳恩  潘登 《化工学报》2008,59(3):708-712
以潲水油(WCO)为原料,探讨了酯化-酯交换两步法制备生物柴油的反应动力学。以活性炭负载硫酸铁[Fe2(SO4)3/AC]为负载型催化剂,通过测定不同反应温度、不同甲醇/脂肪酸(FFA)摩尔比条件下WCO中游离脂肪酸的转化率,以此确定酯化反应的动力学控制步骤及动力学方程中的待定参数,从而建立了在实验温度范围内酯化反应的动力学方程,并根据碱催化酯交换反应机理,在简化的动力学模型基础上,推导出了WCO中甘油三酯(TG)与甲醇发生酯交换反应的宏观动力学方程。结果表明,酯化反应和酯交换反应的动力学方程在实验条件范围内都能较好地描述各自的反应过程。  相似文献   

20.
利用菜籽油脱臭馏出物制备生物柴油新工艺   总被引:1,自引:1,他引:0  
以菜籽油脱臭馏出物为原料,首先以D002阳离子交换树脂作催化剂,进行酯化反应,降低原料酸值;然后以氢氧化钾作催化剂进行醇解反应来制备生物柴油的二步法新工艺路线。结果表明:D002阳离子交换树脂具有很强的催化活性,游离脂肪酸最高转化率达97.7%,连续使用4次后,催化活性仍然很高,达96%以上;碱催化过程中甘油酯的最高转化率达97.4%。产品品质大都符合美国ASTMD6751-03生物柴油标准。由此可见,先用树脂催化处理高酸值废油,然后进行碱催化制备生物柴油二步法工艺是一种切实可行的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号