首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A magnetic core‐mesoporous shell KOH/Fe3O4@γ‐Al2O3 nanocatalyst was synthesized using the Fe3O4@γ‐Al2O3 core‐shell structure as support and KOH as active component. The prepared samples were characterized by X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDS), Fourier transform infrared (FTIR), Brunauer‐Emmett‐Teller (BET), and vibrating sample magnetometry (VSM) techniques. Transesterification of canola oil to methyl esters (biodiesel) in the presence of the magnetic core‐mesoporous shell KOH/Fe3O4@γ‐Al2O3 nanocatalyst was investigated. Response surface methodology (RSM) based on the Box‐Behnken design (BBD) was employed to optimize the influence of important operating variables on the yield of biodiesel. A biodiesel yield of 97.4 % was achieved under optimum reaction conditions. There was an excellent agreement between experimental and predicted results.  相似文献   

2.
Racemic cis‐10‐azatetracyclo[7.2.0.12,6.14,8]tridecan‐11‐one was prepared from homoadamant‐4‐ene by chlorosulfonyl isocyanate addition. The transformation of the β‐lactam to the corresponding β‐amino ester followed by Candida antarctica lipase A‐catalyzed enantioselective (E>>200) N‐acylation with 2,2,2‐trifluoroethyl butanoate afforded methyl (1R,4R,5S,8S)‐5‐aminotricyclo[4.3.1.13,8]undecane‐4‐carboxylate and the (1S,4S,5R,8R)‐butanamide with>99% ee at 50% conversion. Alternatively, transformation of the β‐lactam to the corresponding N‐hydroxymethyl‐β‐lactam and the following Pseudomonas cepacia (currently Burkholderia cepacia) lipase‐catalyzed enantioseletive O‐acylation provided the (1S,4S,6R,9R)‐alcohol (ee=87%) and the corresponding (1R,4R,6S,9S)‐butanoate (ee>99%). In the latter method, competition for the enzyme between the (1R,4R,6S,9S)‐butanoate, 2,2,2‐trifluoroethyl butanoate and the hydrolysis product, butanoic acid, tended to stop the reaction at about 45% conversion and finally gave racemization in the (1S,4S,6R,9R)‐alcohol with time.  相似文献   

3.
Efficient one‐step syntheses of α,β‐ and β,β‐dihaloenones were achieved by ruthenium(II)‐catalyzed reactions between cyclic or acyclic diazodicarbonyl compounds and oxalyl chloride or oxalyl bromide in moderate to good yields. This methodology offers several significant advantages, which include ease of handling, mild reaction conditions, one‐step reaction, and the use of an effective and non‐toxic catalyst. The synthesized compounds were further transformed into highly functionalized novel molecules bearing aromatic rings on the enone moiety using the Suzuki reaction.

  相似文献   


4.
Several chiral BINOL‐derived bisoxazoline (BOX)/copper(II) complexes were synthesized and evaluated as catalysts for the Friedel–Crafts reaction of indoles with isatin‐derived β,γ‐unsaturated α‐keto esters. The resulting bis‐indole products bearing a quaternary stereocenter were obtained in excellent yields and enantioselectivities. Additionally, the desired products were practically transformed to α‐amino esters, α‐hydroxy esters and α‐keto amides. It is noteworthy that this catalytic procedure was conducted with a catalyst loading of 0.5 mol% without any discernible decrease in the reactivity or enantioselectivity.

  相似文献   


5.
Two new adsorbents [β‐cyclodextrin–chitosan (β‐CD–CTS) and β‐cyclodextrin‐6–chitosan (β‐CD‐6‐CTS)] were synthesized by the reaction of β‐cyclodextrin (β‐CD) with epoxy‐activated chitosan (CTS) and the sulfonation of the C‐6 hydroxyl group of β‐cyclodextrin with CTS, respectively. Their structures were confirmed by IR spectral analysis and X‐ray diffraction analysis, and their apparent amount of grafting was determined by ultraviolet spectroscopy. The adsorption properties of β‐CD‐CTS and β‐CD‐6‐CTS for p‐dihydroxybenzene were studied. The experimental results showed that the two new adsorbents exerted adsorption on the carefully chosen target. The highest saturated capacity of p‐dihydroxybenzene of β‐CD‐CTS and β‐CD‐6‐CTS were 51.68 and 46.41 mg/g, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 860–864, 2004  相似文献   

6.
A new class of nitro‐functionalized α,β‐unsaturated esters has been prepared by a regio‐ and diastereoselective Michael addition of nitroalkanes to β‐nitroacrylates, performed at room temperature, under carbonate on polymer as promoter, and in the presence of ethyl acetate as eco‐friendly solvent. Moreover, by the modular choice of the reaction conditions the method allows the synthesis of 1,3‐butadiene‐2‐carboxylates.  相似文献   

7.
The inclusion complex formed by β‐cyclodextrin (β‐CD) with the cationic surfactant hexadecyltrimethylammonium chloride (HTAC) was studied by viscometry using poly(ethylene oxide) (PEO)–HTAC aggregates as a viscosity indicator. The relative viscosity of β‐CD in aqueous PEO–HTAC solution profiles shows that the formation of the β‐CD/HTAC inclusion complex causes HTAC molecules to be stripped off the PEO chains, resulting in a decrease of aqueous solution viscosity as a result of the decrease in electrostatic repulsion between polymer‐bound HTAC micelles. The viscosity minimum at Cβ‐CD/CHTAC = 0.5 indicates that the molecular ratio of host molecule to guest molecule is 1:2 in the β‐CD/HTAC inclusion complex.  相似文献   

8.
In the present study the derivatization of two water‐soluble synthetic polymers, α,β‐poly(N‐2‐hydroxyethyl)‐DL ‐aspartamide (PHEA) and α,β‐polyasparthylhydrazide (PAHy), with glycidyltrimethylammonium chloride (GTA) is described. This reaction permits the introduction of positive charges in the macromolecular chains of PHEA and PAHy in order to make easier the electrostatic interaction with DNA. Different parameters affect the reaction of derivatization, such as GTA concentration and reaction time. PHEA reacts partially and slowly with GTA; on the contrary the reaction of PAHy with GTA is more rapid and extensive. The derivatization of PHEA and PAHy with GTA is a convenient method to introduce positive groups in their chains and it permits the preparation of interpolyelectrolyte complexes with DNA. © 2000 Society of Chemical Industry  相似文献   

9.
10.
BACKGROUND: Pharmaceutical companies continue to evaluate β‐amino acids and β‐lactams in a range of drug candidates. The development of a highly efficient and selective bioresolution of cyclic β‐lactam substrates could yield enantiopure lactams and β‐amino acids with medicinal potential. The aim of this work was to discover and develop a biocatalyst capable of selectively hydrolysing β‐lactam substrates. RESULTS: Screening of our in‐house culture collection led to the discovery of a microorganism, Rhodococcus globerulus (NCIMB 41042) with β‐lactamase activity. Whole‐cell bioresolutions of the β‐lactams 1–4 were successfully carried out and in all cases enantiomeric excesses of the residual lactam and amino acid product were found to be greater than 98%. For one example, the bioresolution was optimised to operate at 60 g L?1 substrate concentration with a 20% wt/wt cell paste loading. CONCLUSION: A microorganism, Rhodococcus globerulus (NCIMB 41042), capable of selectively hydrolysing a range of cyclic β‐lactams, has been discovered. A scalable whole‐cell bioresolution process has been developed, leading to the synthesis of multigram quantities of enantiomerically pure β‐lactams and β‐amino acids. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
The dynamic kinetic resolution of α‐substituted racemic β‐lactams by alcoholytic ring‐opening, catalyzed by immobilized lipase B from Candida antarctica is described. With this process, a variety of racemic α‐substituted N‐Cbz‐azetidinones (Cbz=benzyloxycarbonyl) was transformed to the corresponding N‐Cbz‐protected β2‐amino acid allyl esters with high enantioselectivity (up to 99%) and high yields (up to quantitative) at room temperature.

  相似文献   


12.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

13.
On the premise that shear in the slit die of an extruder was minimized as far as possible, β‐nucleated isotactic polypropylene (iPP) was extruded. Simultaneously, once the extrudate (in the melt state) left the die exit, it was stretched at various stretching rates (SRs). For iPP with a low content of β‐nucleating agent (β‐NA), the crystallinity of β‐phase (Xβ) initially increases with increasing SR, and then decreases slightly with further increase in SR. However, for iPP containing a higher content of β‐NA, with increasing SR, Xβ decreases monotonically, indicating a negative effect of SR on β‐phase formation. Small‐angle X‐ray scattering and polarized optical microscopy experiments reveal that, when SR is less than 30 cm min?1, the increasing amount of row nuclei induced by increasing SR is mainly responsible for the increase of Xβ. In contrast, when SR exceeds 30 cm min?1, the overgrowth of shish structures unexpectedly restrains the development of β‐phase, and spatial confinement is considered as a better explanation for the suppression of β‐phase. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
A highly enantioselective Michael addition of cyclic 1,3‐dicarbonyl compounds to β,γ‐unsaturated α‐keto esters catalyzed by amino acid‐derived thiourea‐tertiary‐amine catalysts is presented. Using 5 mol% of a novel tyrosine‐derived thiourea catalyst, a series of chiral coumarin derivatives were obtained in excellent yields (up to 99%) and with up to 96% ee under very mild conditions within a short reaction time.  相似文献   

15.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


16.
BACKGROUND: It is a challenge for polymer processing to promote the formation of γ‐phase under atmospheric conditions in isotactic polypropylene (iPP) copolymer containing chain errors. Incorporation of an α‐nucleator in iPP copolymer seems reasonable since it can enhance non‐isothermal crystallization. Up to now, however, the issue regarding a β‐nucleated iPP copolymer still remains unclear, which is the subject of this study. RESULTS: The results indicate that the γ‐phase indeed occurs in a β‐nucleated random iPP copolymer with ethylene co‐unit (PPR) sample and becomes predominant at slow cooling rates (e.g. 1 °C min?1) where the formation of the β‐form is suppressed to a large extent. With detailed morphological observations the formation of γ‐phase in the β‐nucleated PPR sample at slow cooling rate is unambiguously attributed to the nucleating duality of the β‐nucleator towards α‐ and β‐polymorphs. The α‐crystals, induced by the β‐nucleator, serve as seeds for the predominant growth of the γ‐phase. Moreover, the presence of the β‐nucleator, acting as heterogeneous nuclei, promotes the formation of γ‐phase in the nucleated PPR sample, at least to some extent. CONCLUSION: The findings in this study extend our insights into the formation of γ‐phase in β‐nucleated iPP copolymer and, most importantly, provide an alternative route to obtain iPP rich in γ‐phase. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
Nanocrystalline magnesium oxide was found to be an effective heterogeneous, solid base catalyst for the one‐pot Wittig reaction to afford α,β‐unsaturated esters and nitriles in excellent yields with high E‐stereoselectivity in the presence of triphenylphosphine under mild conditions.  相似文献   

18.
Compound 20 , a pseudoenantiomer of β‐isocupreidine (β‐ICD), was synthesized from quinine employing a Barton reaction of nitrosyl ester 13 and acid‐catalyzed cyclization of carbinol 18 as key steps. The Baylis–Hillman reaction of benzaldehyde, p‐nitrobenzaldehyde, and hydrocinnamaldehyde with 1,1,1,3,3,3‐hexafluoroisopropyl acrylate (HFIPA) using 20 as a chiral amine catalyst was found to give the corresponding S‐enriched adducts in high optical purity (>91% ee) in contrast to the β‐ICD‐catalyzed reaction which affords R‐enriched adducts. This result suggests that compound 20 can serve as an enantiocomplementary catalyst of β‐ICD in the asymmetric Baylis–Hillman reaction of aldehydes with HFIPA.  相似文献   

19.
A mild and highly efficient, user‐friendly procedure has been developed for the conversion of oxiranes to thiiranes under supramolecular catalysis in the presence of β‐cyclodextrin in water at ambient temperature in excellent yields. The use of β‐cyclodextrin in this transformation overcomes the use of heavy metal halides as promoters and chlorinated hydrocarbons and other hazardous organic solvents.  相似文献   

20.
Tungstophosphoric acid supported on cesium-containing niobia (TPA/Cs x /Nb2O5, x = 1.0–2.5) catalysts were prepared by a two-step impregnation method, and their physico-chemical properties were investigated. The initial studies on the esterification of oleic acid with methanol revealed that TPA/Cs ratio affected the acidity as well as the activity of the catalysts. Among the catalysts tested, TPA/Cs1.0/Nb2O5 exhibited the best performance. In addition, the efficiency of TPA/Cs1.0/Nb2O5 for biodiesel synthesis from palm fatty acid distillate (PFAD), a by-product from palm oil industry, was demonstrated, and the reaction parameters were also evaluated. Over 90% yield of FAME was achieved, and the properties of the biodiesel obtained from PFAD met the standard requirements for biodiesel fuel. However, deactivation of the catalysts was observed, possibly due to structural transformation or organic residues blocking the active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号