首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To enhance oil recovery in high‐temperature and high‐salinity reservoirs, a novel fatty amine polyoxyethylene ether diethyl disulfonate (FPDD) surfactant with excellent interfacial properties was synthesized. The interfacial tension (IFT) and contact angle at high temperature and high salinity were systematically investigated using an interface tension meter and a contact angle meter. According to the experimental results, the IFT between crude oil and high‐salinity brine water could reach an ultra‐low value of 10?3 mN m?1 without the aid of extra alkali at 90°C after aging. The FPDD surfactant has strong wettability alternation ability that shifts wettability from oil‐wet to water‐wet. The FPDD surfactant with a high concentration also has good emulsion ability under high‐temperature and high‐salinity conditions. Through this research work, we expect to fill the lack of surfactants for high‐temperature and high‐salinity reservoirs and broaden its great potential application area in enhanced oil recovery.  相似文献   

2.
It is an urgent issue to enhance oil recovery for unconventional reservoirs with high salinity. Focused on this topic, salt addition is a powerful tool to motivate the surfactant assembly at the water/oil interface and improve the interfacial activity. We used a cationic surfactant cetyltrimethylammonium bromide (CTAB) and an anionic salt dicarboxylic acid sodium (CnDNa) to construct gemini-like surfactants at the interface and evaluated their ability to reduce the interfacial tension (IFT) between model oil (toluene and n-decane, v:v = 1:1) and water. Interestingly, the fabrication of a (CTAB)2/C4DNa gemini-like surfactant was hardly achieved at the fresh water/model oil interface, but accomplished at the brine/model oil interface. At a high NaCl concentration (100,000 mg L−1), the IFT value is reduced to 10−3 mN m−1 order of magnitude, which is generally desired in practical applications. The control experiments displacing the surfactant type and the spacer length further confirmed the NaCl effects on the interfacial assembly.  相似文献   

3.
Novel surfactant‐polymer (SP) formulations containing fluorinated amphoteric surfactant (surfactant‐A) and fluorinated anionic surfactant (surfactant‐B) with partially hydrolyzed polyacrylamide (HPAM) were evaluated for enhanced oil recovery applications in carbonate reservoirs. Thermal stability, rheological properties, interfacial tension, and adsorption on the mineral surface were measured. The effects of the surfactant type, surfactant concentration, temperature, and salinity on the rheological properties of the SP systems were examined. Both surfactants were found to be thermally stable at a high temperature (90 °C). Surfactant‐B decreased the viscosity and the storage modulus of the HPAM. Surfactant‐A had no influence on the rheological properties of the HPAM. Surfactant‐A showed complete solubility and thermal stability in seawater at 90 °C. Only surfactant‐A was used in adsorption, interfacial tension, and core flooding experiments, since surfactant‐B was not completely soluble in seawater and therefore was limited to deionized water. A decrease in oil/water interfacial tension (IFT) of almost one order of magnitude was observed when adding surfactant‐A. However, betaine‐based co‐surfactant reduced the IFT to 10?3 mN/m. An adsorption isotherm showed that the maximum adsorption of surfactant‐A was 1 mg per g of rock. Core flooding experiments showed 42 % additional oil recovery using 2.5 g/L (2500 ppm) HPAM and 0.001 g/g (0.1 mass%) amphoteric surfactant at 90 °C.  相似文献   

4.
Foam injection contributes to improved oil recovery through flow diversion, reduction of interfacial tension (IFT), and wettability alteration of the rock while its stability is an issue. In this article, nitrogen-foam was optimally formulated using fluorocarbon tubiguard protect (FTP) surfactant stabilized with sodium dodecyl sulfate (SDS) co-surfactant that was later experimentally considered for oil recovery in a fractured carbonate rock taken from an oil field in the Middle East. The results showed that the 5:1 volume ratio of fluorocarbon surfactant and SDS (FS51) generates a stable foaming agent with ability of changing the wettability of the carbonate rock surfaces to an intermediate gas-wet state. A series of core-flood experiments at HPHT conditions were also carried out and designed to properly represent matrix-fracture media using both a horizontally and vertically oriented setup. The oil saturated cores were flooded with nitrogen gas first followed by foam injection. It was concluded that foam can divert the gas to flow from fractures to the matrix blocks and result in a significant oil recovery. The contact angle tests that performed after core-flood experiments revealed the wettability changes of fracture surfaces from an oil-wet to a gas-wet state. This allows gas to be imbibed into the matrix blocks by capillary force and results in enhancement of ultimate oil recovery. This study revealed that trapped oil in matrixes blocks that had not been drained during the gas injection process could be produced by designing a stable foam that sustainably diverts injected fluid from fractures to matrix zone.  相似文献   

5.
采油过程中阴/阳离子型表面活性剂复配使用可显著增强驱油效果,对其微观机理的深入研究有助于驱油用表面活性剂的结构优化设计及使用。采用分子动力学方法研究了不同摩尔比的阴离子表面活性剂聚醚羧酸钠(PECNa)和阳离子表面活性剂十八烷基三甲基氯化铵(OTAC)复配体系在油水界面上的分子行为和物理性质。结果表明,复配体系比单种表面活性剂体系更有利于降低油水界面张力。不同复配比体系中,两种表面活性剂头基相反电荷间的吸引作用使表面活性剂之间对各自反离子的静电吸引作用减弱,且等摩尔比体系尤为明显。阴离子表面活性剂的亲水头基对阳离子表面活性剂亲水头基形成的水化层内水分子的结构取向无显著影响,反之亦然。通过调节两种离子型表面活性剂的复配比例,可调整油水界面吸附层微观结构,有望降低油水界面张力,提高采收率。  相似文献   

6.
A new series of sulfobetaine surfactants with double-chain single-head structure were derived from 1,3-dialkyl glyceryl ethers and their performances in reducing Daqing crude oil/connate water interfacial tension (IFT) in the absence of alkali were studied. With a large hydrophilic head group and double hydrophobic chains, these surfactants are efficient at reducing crude oil/connate water IFT. Those with didecyl and dioctyl are good hydrophobic surfactants that can reduce Daqing crude oil/connate water to ultra-low IFT by mixing with a small molar fraction of various conventional single-chain hydrophilic surfactants, such as α-olefin sulfonates, dodecyl polyoxyethylene (10) ether, and cetyl dimethyl hydroxypropyl sulfobetaine. The asymmetric double-chain sulfobetaine derived from 1-decyl-3-hexyl glyceryl ether can reduce Daqing crude oil/connate water IFT to ultra-low solely over a wide concentration range (0.03–10 mM or 0.0017–0.58 wt.%), which allows for use of an individual surfactant instead of mixed surfactants to avoid chromatographic separation in the reservoir. In addition, formulations rich in sulfobetaine surfactants show low adsorption on sandstone, keeping the negatively charged solid surface water-wet, and forming crude oil-in-water emulsions. These new sulfobetaine surfactants are, therefore, good candidates for surfactant-polymer flooding free of alkali.  相似文献   

7.
The dynamic noncovalent interaction between the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and 1,3-diphenylguanidine (DPG) was employed to control the interfacial activity of the surfactant. At high HCl concentration (1000 mg L−1), the SDBS/DPGn+ system could reduce the water/oil interfacial tension (IFT) to 10−4 mN m−1 order of magnitude, which was much lower than the IFT values in the SDBS/DPG+ system with a low HCl concentration (100 mg L−1) and the individual SDBS system by three and four orders of magnitude, respectively. The pH-switchable protonation of amido groups in DPG molecules determines the SDBS/DPG molecular interaction and the amplitude of IFT reduction, which was confirmed by control experiments using two other surfactants (sodium dodecyl sulfate [SDS] and dodecyl trimethylammonium bromide [DTAB]). Moreover, the investigation of the NaCl and temperature effects on the IFT indicated the intensity of mixed SDBS/DPGn+ adsorption layers at the water/oil interface.  相似文献   

8.
Low-salinity surfactant (LSS) flooding is a combined enhanced oil recovery (EOR) technique that increases oil recovery (OR) by altering the rock surface wettability and reducing oil–water interfacial tension (IFT). In this study, optimum concentrations of several types of salt in distilled water were obtained on the basis of IFT experiments for the preparation of low-salinity water (LSW). Then, a new oil-based natural surfactant (Gemini surfactant, GS) was combined with LSW to investigate their effects on IFT, wettability, and OR. Experimental results showed that LSW is capable of reducing IFT and contact angle, but the synergy of GS and the active ions Mg2+, Ca2+, and SO42− in LSW was more effective on IFT reduction and wettability alteration. The combination of 1000 ppm MgSO4 and 3000 ppm GS led to a decrease in contact angle from 134.82° to 36.98° (oil-wet to water-wet). Based on core flooding tests, LSW injection can increase OR up to 71.46% (for LSW with 1000 ppm MgSO4), while the combination of GS and LSW, as LSS flooding, can improve OR up to 84.23% (for LSS with 1000 ppm MgSO4 and 3000 ppm GS). Therefore GS has great potential to be used as a surfactant for EOR.  相似文献   

9.
Surfactants are frequently used in chemical enhanced oil recovery (EOR) as it reduces the interfacial tension (IFT) to an ultra‐low value and also alter the wettability of oil‐wet rock, which are important mechanisms for EOR. However, most of the commercial surfactants used in chemical EOR are very expensive. In view of that an attempt has been made to synthesis an anionic surfactant from non‐edible Jatropha oil for its application in EOR. Synthesized surfactant was characterized by FTIR, NMR, dynamic light scattering, thermogravimeter analyser, FESEM, and EDX analysis. Thermal degradability study of the surfactant shows no significant loss till the conventional reservoir temperature. The ability of the surfactant for its use in chemical EOR has been tested by measuring its physicochemical properties, viz., reduction of surface tension, IFT and wettability alteration. The surfactant solution shows a surface tension value of 31.6 mN/m at its critical micelle concentration (CMC). An ultra‐low IFT of 0.0917 mN/m is obtained at CMC of surfactant solution, which is further reduced to 0.00108 mN/m at optimum salinity. The synthesized surfactant alters the oil‐wet quartz surface to water‐wet which favors enhanced recovery of oil. Flooding experiments were conducted with surfactant slugs with different concentrations. Encouraging results with additional recovery more than 25% of original oil in place above the conventional water flooding have been observed. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2731–2741, 2017  相似文献   

10.
Micelles composed of mixed surfactants with different structures (mixed micelles) are of great theoretical and industrial interest. This work pertains tomaximizing interfacial tension (IFT) reduction via surfactant pairs. In this respect, four types of fatty acid amides based on lauric, myristic, palmitic, and stearic acids were blended with dodecyl benzene sulfonic acid at a molar ratio of 4∶1 and designated as A1, A2, A3, and A4, respectively. The IFT was measured for each blend at different concentrations using Badri crude oil. The most potent formula (A4) was evaluated for using in enhanced oil recovery (EOR). The IFT was tested in the presence of different electrolyte concentrations with different crude oils at different temperatures. Finally several runs were devoted to study the displacement of Badri crude oil by A4 surfactant solution using different slug sizes of 10, 20, and 40% of pore volume (PV). The study reveled that Badri crude oil gave ultra-low IFT at lowest surfactant concentration and 0.5% of NaCl. The recovery factor at a slug size of 20% PV was 83% of original oil in place compared with 59% in case of conventional water flood.  相似文献   

11.
In this study, interfacial tension (IFT) is measured between brine and crude oil (a sample of heavy oil from an Iranian oil reservoir) in the presence of two nonionic surfactants, KEPS 80 (Tween 80) and Behamid D, at different concentrations in order to optimize the concentrations of the surfactants. The surface response method is used to design the IFT measurement experiments. The experimental design and optimization is performed using the IFT as an objective function and temperature, concentration, and time as independent variables. In addition to the IFT measurement, various experiments such as stability tests of the surfactants in NaCl brine solutions, adsorption experiments on the carbonated rock surface, and phase behavior tests are performed to investigate the behavior of KEPS 80 and Behamid D in the enhanced oil recovery process. At the end, a model using the response surface statistical technique is designed for optimization of the concentrations of the surfactants, and a surfactant molecular migration mechanism is used for explanation of the dynamic IFT variation versus time. In the case of IFT experiments, the effect of surfactant concentration (at 1000, 3000, and 5000 ppm) on the dynamic IFT is investigated. The experiments are performed at four temperatures (25, 40, 50, and 67°C). The results show that the oil–brine IFT values can be reduced to about 4 mN m−1 in the presence of Behamid D and to about 1 mN m−1 in the presence of KEPS 80 at low concentrations.  相似文献   

12.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   

13.
This work investigates the possibility of injecting dilute aqueous solutions of novel surfactants into the Yibal field (Sultanate of Oman). This was accomplished through an experimental protocol based on the following criteria: (i) compatibility of the surfactants with the high-saline reservoir water (∼200 g/L); (ii) low interfacial tension (IFT) between crude oil and reservoir water (less than 10−2 mN m−1); and (iii) maintaining the low IFT behaviour during the entire surfactant flooding. Novel surfactants selected in this study consist of a series of ether sulfonates (AES-205, AES-128, AES-506, and 7–58) and an amphoteric surfactant (6–105). These surfactants were found to be compatible with reservoir water up to 0.1% surfactant concentration, whereas 6–105 and 7–58 showed compatibility within the full range of surfactant concentration investigated (0.001–0.5%). All surfactant systems displayed dynamic IFT behavior, in which ultralow transient minima were observed in the range 10−4–10−3 mN m−1, followed by an increase in the IFT to equilibrium values in the range 10−3–10−1 mN m−1. The results also showed that with respect to concentration (0.05–0.5%) and temperature (45–80°C), AES-205 and 7–58 surfactants exhibit a wide range of applicability, with the IFT remaining below 10−2 mN m−1, as required for substantial residual oil recovery. In addition, ultralow IFT were obtained at surfactant concentrations as low as 0.001%, making the use of these surfactants in enhanced oil recovery extremely cost-effective.  相似文献   

14.
In order to enhance oil recovery from high‐salinity reservoirs, a series of cationic gemini surfactants with different hydrophobic tails were synthesized. The surfactants were characterized by elemental analysis, infrared spectroscopy, mass spectrometry, and 1H‐NMR. According to the requirements of surfactants used in enhanced oil recovery technology, physicochemical properties including surface tension, critical micelle concentration (CMC), contact angle, oil/water interfacial tension, and compatibility with formation water were fully studied. All cationic gemini surfactants have significant impact on the wettability of the oil‐wet surface, and the contact angle decreased remarkably from 98° to 33° after adding the gemini surfactant BA‐14. Under the condition of solution salinity of 65,430 mg/L, the cationic gemini surfactant BA‐14 reduces the interfacial tension to 10?3 mN/m. Other related tests, including salt tolerance, adsorption, and flooding experiments, have been done. The concentration of 0.1% BA‐14 remains transparent with 120 g/L salinity at 50 °C. The adsorption capacity of BA‐14 is 6.3–11.5 mg/g. The gemini surfactant BA‐14 can improve the oil displacement efficiency by 11.09%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46086.  相似文献   

15.
Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant.  相似文献   

16.
Low interfacial tension (IFT) drainage and imbibition are effective methods for improving oil recovery from reservoirs that have low levels of oil or are tight (i.e., exhibit low oil permeability). It is critical to prepare a high efficient imbibition formula. In this work, a novel 2,4,6-tris(1-phenylethyl)phenoxy polyoxyethylene ether hydroxypropyl sodium sulfonate (TPHS) surfactant was synthesized and evaluated for imbibition. Its structure was confirmed by Fourier transform infrared spectroscopy and the interfacial tension (IFT) of the crude oil/0.07% TPHS solution was 0.276 mN/m. When 0.1 wt% TPHS was mixed with 0.2 wt% alpha olefin sulfonate (AOS), the IFT was lowered to 6 × 10−2 mN/m. The synergy between nanoparticles (NPs) and TPHS/AOS mixed surfactant was studied by IFT, contact angle on sandstone substrates, zeta potential, and spreading dynamics through microscopic methods. The results show that the surfactant likely adsorbs to the NP surface and that NP addition can help the surfactant desorb crude oil from the glass surface. With the addition of 0.05 wt% SiO2 NPs (SNPs), the imbibition oil recovery rate increased dramatically from 0.32%/h to 0.87%/h. The spontaneous imbibition recovery increased by 4.47% for original oil in place (OOIP). Compared to flooding by TPHS/AOS surfactant solutions, the oil recovery of forced imbibition in the sand-pack increased by 12.7% OOIP, and the water breakthrough time was delayed by 0.13 pore volumes (PV) when 0.05% SNPs were added. This paper paves the way for enhanced oil recovery in low-permeability sandstone reservoirs using novel TPHS/AOS surfactants and SNPs.  相似文献   

17.
The synthesis of sulfobetaine surfactants and their application in tertiary oil recovery (TOR) are summarized in this paper. The synthesis of sulfobetaine surfactants was classified into three categories of single hydrophobic chain sulfobetaine surfactants, double hydrophobic chain sulfobetaine surfactants and Gemini sulfobetaine surfactants for review. Their application in TOR was classified into surfactant flooding, microemulsion flooding, surfactant/polymer (SP) flooding and foam flooding for review. The sulfonated betaine surfactants have good temperature resistance and salt tolerance, low critical micelle concentration (cmc) and surface tension corresponding to critical micelle concentration (γcmc), good foaming properties and wettability, low absorption, ultralow interfacial tension of oil/water, and excellent compatibility with other surfactants and polymers. Sulfobetaine surfactants with ethoxyl structures, hydroxyl and unsaturated bonds, and Gemini sulfobetaine surfactants will become an important direction for tertiary oil recovery because they have better interfacial activity in high-temperature (≥90°C) and high-salinity (≥104 mg/L) reservoirs. Some problems existing in the synthesis and practical application were also reviewed.  相似文献   

18.
The addition of surfactants to modify the surface property of nanoparticles (NPs) from hydrophilic to hydrophobic also enhances their interfacial properties. Several approaches were previously proposed to calculate the surface tension/interfacial tension (IFT) for different systems in the presence of NPs, surfactants, and electrolytes. However, most of these approaches are indirect and require several measured parameters. Therefore, a mathematical model is developed here to calculate the surface tension/IFT for these systems. The developed model takes into account the cohesive energy due to the interaction of the surfactant CH2 groups, the electric double layer effect due to the interaction among the ions of NPs, surfactants, and electrolytes, and the dipole–dipole interaction of NPs and electrolytes. The developed model is compared and validated with the laboratory experimental data in literature. The results reveal further understanding of the mechanisms involved in stabilization of oil/water emulsion in the presence of NPs, surfactants, and electrolytes.  相似文献   

19.
木素磺酸盐及改性物在三次采油过程中,具有降低石油磺酸盐等阴离子型活性剂在岩石表面上的吸附损失、乳化原油,与石油磺酸盐产生协同效应,降低油、水界面张力,提高残余油回收效率的性能。介绍了木素碘酸盐的改性方法与用途。应用木素磺酸盐及改性物进行三次采油,对于有效地开采水驱残余油,降低表面活性剂驱油成本具有重要意义。  相似文献   

20.
Cold water detergency of triacylglycerol semisolid soils is much more challenging than liquid vegetable oils due to poorer interaction between surfactants and semisolid soil. This research seeks to improve the removal efficiency of semisolid soils below their melting points using surfactant-based formulations containing different alcohol additives. To this end, cold water detergency of solid coconut oil and solid palm kernel oil was investigated in various surfactant/alcohol systems, including single anionic extended surfactants, single nonionic alcohol ethoxylate surfactants, and a mixture of anionic surfactants. A series of alcohols (2-butanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol) were added to the surfactant formulations to investigate cold water detergency improvement. While cold water detergency using surfactants alone was poor, it was considerably improved when optimum salinity (S*) and 1-heptanol, 1-octanol, or 1-nonanol were introduced to the studied surfactant formulations. The maximum detergency of solid coconut oil exceeded 90% removal in the 0.1 w/v% C14-15-8PO-SO4Na/0.2 w/v% 1-octanol/4 w/v% NaCl system (a final optimized surfactant system) at a washing temperature of 10°C versus 22.9 ± 2.2% in the surfactant alone (not at optimum salinity and no additive). Further analysis showed that improved cold water detergency using surfactant/intermediate-chain alcohols/NaCl could be correlated with high wettability (low contact angle) as well as favorable surfactant system-soil interaction as observed by lower interfacial tension values. In contrast, the improved cold water detergency was observed to be independent of dispersion stability. This work thus demonstrates that surfactant system design, including additives, can improve cold water detergency of semisolid soils and should be further explored in future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号