首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this research was to evaluate the effect of high‐intensity ultrasound (HIU) and crystallization temperature (Tc) on the crystallization behavior, melting profile, and elasticity of a soft stearin fraction of high‐stearic high‐oleic sunflower oil. Results showed that HIU can be used to induce and increase the rate of crystallization of the soft stearin with significantly higher SFC values obtained in the sonicated samples, especially at higher Tc. SFC values were fitted using the Avrami model, and higher kn and lower n values were obtained when samples were crystallized with sonication, suggesting that sonicated samples crystallized faster and through an instantaneous nucleation mechanism. In addition, the crystal morphology, melting behavior, and viscoelasticity were significantly affected by sonication.  相似文献   

2.
High‐oleic low‐linolenic acid soybean oil (HOLLSB, Plenish®) is an emerging new oil with projections of rapid expansion in the USA. HOLLSB has important technological advantages, which are expected to drive a gradual replacement of commodity oils used in food applications such as soybean oil. A key technological advantage of HOLLSB is its relatively high oxidation stability. This oxidation stability is the result of a favorable fatty acid composition, high (76%) oleic acid, low linoleic (6.7%), and alpha‐linolenic (1.6%) acids, and high concentration of tocopherols (936 ppm) after refining, enriched with the gamma‐homolog (586 ppm). A detailed analysis of the fatty acid composition of this HOLLSB by gas chromatography–mass spectrometry allowed the identification and structural determination of 9‐cis‐heptadecenoic acid (or 17:1n‐8). To our knowledge, this is the first time 9‐cis‐heptadecenoic acid has been unequivocally reported in soybean oil. This unusual fatty acid component has the potential to be used as a single authenticity marker for the quantitative assessment of soybean oil. The Rancimat induction period (IP) of Plenish® (16.1 hours) was higher than those of other commercially available high‐oleic oils, such as canola (13.4 hours), and Vistive® Gold (10 hours), a different variety of soybean oil. Plenish® showed the same IP as high‐oleic sunflower oil. Plenish® shows a modest increase in oxidation stability with the external addition or relatively high concentrations of tocopherols. The characteristic high oxidative stability of Plenish® may be further enhanced with the use of nontocopherol antioxidants.  相似文献   

3.
Blends [60:40, 70:30, and 80:20 (w/w)] of coconut oil (CO) and high oleic sunflower oil (HOSO) were interesterified using immobilized enzyme, Lipozyme® TL IM (Novozymes North America Inc., Franklinton, NC, USA). The structured lipids (SLs), referred to as interesterified products (IPs) IP60:40, IP70:30, and IP80:20, were compared to CO and HOSO for application in edible films. IPs were compared based on fatty acid profile, TAG molecular species, melting profile, moisture vapor permeability, mechanical properties, film transparency, density, and thickness. Interesterification increased oleic acid content at the sn-2 position of IPs. CO had 5.50 ± 1.67 mol% oleic acid at the sn-2 position, and when interesterified with HOSO (92.81 ± 1.10 mol% oleic acid) the amount of oleic acid significantly increased (p < 0.05) at the sn-2 position for IP60:40, IP70:30, and IP80:20 (33.86 ± 1.55, 27.34 ± 1.20, 20.61 ± 1.50 mol%), respectively. There was no significant difference between SLs, HOSO, and CO for water vapor permeability and density when applied to emulsion edible films. The HOSO film was significantly different (1.43 ± 0.27 AUmm?1) from the rest of the SLs and CO for film transparency. IP60:40 (2.20 ± 0.22 AUmm?1) decreased the opacity and was significantly different from HOSO and IP80:20 (2.88 ± 0.08 AUmm?1). Tensile strength of IP60:40 was 0.39 ± 0.17 MPa which was significantly different from IP70:30, IP80:20, and HOSO. The elongation at break was significantly different for HOSO and IP60:40. IP60:40 could be used to further investigate the use of SL in edible film for sports nutrition products.  相似文献   

4.
A characterization study of Turkish monovarietal olive oils using chemical variables such as fatty acid, sn‐2 fatty acid, triacylglycerol, and sterol composition is presented. A total of 101 samples of Olea europaea L. fruits from 18 cultivars were collected for two crop years from west, south, and southeast regions of Turkey. Olives were processed to oil and olive oil samples were evaluated for their triacylglycerol structures and sterol composition. Oleic acid content ranged from 60.15 to 80.46 % of total fatty acids and represented 70.90–89.02 % of sn‐2 position triacylglycerols. Major triglycerides of oil samples were triolein, palmitodiolein, dioleolinolein, palmitooleolinolein, dipalmitoolein, and stearodiolein. Triolein values were between 24.72 and 48.64 % and compatible with the fatty acid composition. Total sterol content varied from 1,145.32 to 2,211.77 mg/kg and Edremit yagl?k stood out because of its high sterol content. A one‐way analysis of variance revealed significant differences for variables among cultivars. Principle component analysis enabled the classification of common varieties on the basis of analytical data. Sterol composition achieved more relevant discrimination than fatty acid and triglyceride composition. Classification according to geographical origin was performed by discriminant analysis.  相似文献   

5.
Frying is a popular practice because of its unique sensory characteristics and low cost. The high temperature reached with this cooking method alters molecules present in the oil. The deterioration of the oil depends primarily on its chemical composition. The aim of this study was to evaluate the thermal stability of high oleic sunflower oil (HOSO), sunflower oil (SO) and mixed oil (MIX) during deep frying of French fries. Octanoic acid and unsaturated fatty acid (UFA)/saturated fatty acid (SFA) ratio showed a good correlation with total polar compounds (TPC) for all frying samples analyzed. HOSO and MIX were characterized by reduced levels of thermal degradation, while SO resulted in the highest values of oxidation products (highest TPC values). SO was also the oil more retained by the food matrix, whereas MIX was the least absorbed. HOSO and MIX, having a high oleic acid content (77.58 and 59.92 %, respectively) and a low linoleic acid content (13.42 and 25.70 %, respectively), showed the best characteristics for the frying process.  相似文献   

6.
4‐Hydroxy‐2‐trans‐nonenal (HNE) is a toxic aldehyde produced mostly in oils containing polyunsaturated fatty acid due to heat‐induced lipid peroxidation. The present study examined the effects of the heating time, the degree of unsaturation, and the antioxidant potential on the formation of HNE in two light olive oils (LOO) and two sunflower oils (one high oleic and one regular) at frying temperature. HNE concentrations in these oil samples heated for 0, 1, 3, and 5 hours at 185 °C were measured using high‐performance liquid chromatography. The fatty‐acid distribution and the antioxidant capacity of these four oils were also analyzed. The results showed that all oils had very low HNE concentrations (<0.5 μg g?1 oil) before heating. After 5 hours of heating at 185 °C, HNE concentrations were increased to 17.98, 25.00, 12.51, and 40.00 μg g?1 in the two LOO, high‐oleic sunflower oil (HOSO), and regular sunflower oil (RSO), respectively. Extending the heating time increased HNE formation in all oils tested. It is related to their fatty‐acid distributions and antioxidant capacities. RSO, which contained high levels of linoleic acid (59.60%), a precursor for HNE, was more susceptible to degradation and HNE formation than HOSO and LOO, which contained only 6–8% linoleic acid.  相似文献   

7.
In an effort to develop alternatives for harmful trans fats produced by partial hydrogenation of vegetable oils, oleogels of high‐stearic soybean (A6 and MM106) oils were prepared with sunflower wax (SW) as the oleogelator. Oleogels of high‐stearic oils did not have greater firmness when compared to regular soybean oil (SBO) at room temperature. However, the firmness of high‐stearic oil oleogels at 4 °C sharply increased due to the high content of stearic acid. High‐stearic acid SBO had more polar compounds than the regular SBO. Polar compounds in oil inversely affected the firmness of oleogels. Differential scanning calorimetry showed that wax crystals facilitated nucleation of solid fats of high‐stearic oils during cooling. Polar compounds did not affect the melting and crystallization behavior of wax. Solid fat content (SFC) showed that polar compounds in oil and wax interfered with crystallization of solid fats. Linear viscoelastic properties of 7% SW oleogels of three oils reflected well the SFC values while they did not correlate well with the firmness of oleogels. Phase‐contrast microscopy showed that the wax crystal morphology was slightly influenced by solid fats in the high‐steric SBO, A6.  相似文献   

8.
High‐oleic soybean oil is chemically functionalized in order to mimic the structure and physical properties of hydrogenated castor oil (HCO). The resulting wax‐like material is evaluated for use as an alternative to other commercial wax coatings for the postharvest treatment of fresh citrus fruit. The racemic nature of the material inhibits ordered crystalline arrangement and negatively affects its relative crystallinity (17.7%), hardness (0.59 ± 0.04 mm?1), and melting profile (44–46 °C), with respect to HCO oil (37.7%, 5.33 ± 0.01 mm?1, 83–87 °C). Nevertheless, compounding the new material with carnauba wax (CAR) imparts a very attractive gloss and prevents moisture loss significantly better than polyethylene, shellac, and CAR‐based coatings. Compounding the hydroxy‐functionalized high‐oleic soybean wax may potentially reduce dependence on imported CAR and other ingredients used in citrus coating emulsion formulations. Practical Applications: The soybean oil‐derived material described in this contribution provides two key performance characteristics desired by citrus growers and packing houses: an efficient barrier to moisture loss and an attractive shine. The synthesis of the hydroxy‐wax is facile and mild, and the materials can be readily formulated into emulsions as required for fruit coating applications. Use of the formulated coating can be extended to other agricultural commodities such as avocados, melons, and stone fruit.  相似文献   

9.
Peanut seed are approximately 50 % oil of which >80 % is either oleic or linoleic acid. The oleic/linoleic acid (O/L) ratio largely influences oxidative stability and hence peanut shelf life. Traditional peanut seed have O/L ratios near 1.5–2.0; however, many new cultivars are “high oleic” with O/L ratios ≥9. During peanut seed handling, contamination among lots may occur. A cost effective method to rapidly differentiate peanut seed based on O/L ratio is needed across multiple segments of the industry, and measurements of oil density and oil refractive index (RI) were evaluated for this potential. Fatty acid profiles of samples from normal and high oleic seed lots, and blends of these oils, were determined by traditional gas chromatography analysis and this data compared to corresponding oil density and RI measurements. Oleic acid content, linoleic acid content, density and RI were all strongly linearly (R 2 > 0.98) correlated for oil blends with O/L ratios from ~2 to 16. Threshold density or RI values both showed excellent potential for rapidly differentiating samples with an O/L ≥ 9; however, sample volume requirements preclude density measurements on single seed.  相似文献   

10.
In this article, we investigate the role of triacylglycerol composition on the properties of epoxidized vegetable oils and the kinetics of the epoxidation process under conditions comparable to commercial epoxidation. Commodity soybean oil (24% oleic acid, 50% linoleic acid, and 7% linolenic acid), high‐oleic soybean oil (75% oleic acid, 8% linoleic acid, and 2.5% linolenic acid), and linseed oil (11% oleic acid, 15% linoleic acid, and 64% linolenic acid) were each epoxidized to various extents. Epoxidation rate, viscosity, differential calorimetry, and X‐ray diffraction data are presented for these oils and interpreted in the context of their fatty acid profile (mostly oleic, linoleic, or linolenic). While fully epoxidized soybean oil is widely commercially available and used in an increasing array of industrial applications, information relating to partially epoxidized oils and epoxidized oils of other cultivars is less well known.  相似文献   

11.
Usually, the chemical structures of cerebrosides in sea creatures are more complicated than those from terrestrial plants and animals. Very little is known about the method for high‐throughput molecular profiling of cerebrosides in sea cucumbers. In this study, cerebrosides from four species of edible sea cucumbers, specifically, Apostichopus japonicas, Thelenota ananas, Acaudina molpadioides and Bohadschia marmorata, were rapidly identified using reversed‐phase liquid chromatography–quadrupole‐time‐of‐flight mass spectrometry (RPLC‐QToF‐MS). [M + H]+ in positive electrospray ionization (ESI) mode were used to obtain the product ion spectra. The cerebroside molecules were selected according to the neutral loss fragments of 180 Da and then identified according to pairs of specific products of long‐chain bases (LCB) and their precursor ions. A typical predominant LCB was 2‐amino‐1,3‐dihydroxy‐4‐heptadecene (d17:1), which was acylated to form saturated and monounsaturated non‐hydroxy and monohydroxy fatty acids with 17–25 carbon atoms. Simultaneously, the occurrence of 2‐hydroxy‐tricosenoic acid (C23:1h) was characteristic of sea cucumber cerebrosides, whereas this molecule was rarely discovered in plants, mammals, or fungi. The profiles of LCB and fatty acids (FA) distribution might be related to the genera of sea cucumber. These data will be useful for identification of cerebrosides using RPLC‐QToF‐MS.  相似文献   

12.
Chemical composition and physical properties of CW88‐OL and CW99‐OL cultivars of high oleic safflower seeds and their hexane‐extracted oils were determined. Dry‐based seed composition of CW88‐OL and CW99‐OL was: moisture = 4.29 and 4.23 %, oil = 42.29 and 46.44 %, Crude protein = 20.94 and 16.41 %, neutral detergent fiber = 28.11 and 28.49 %, ash = 1.55 and 2.01 %, phosphorus content = 2033 and 3995 mg/kg, respectively. Major fatty acids in oils were ~78 % oleic (O), ~13 % linoleic (L), ~5 % palmitic (P) and ~2 % stearic (St) acids, for both cultivars. The main triacylglycerols were OOO (~50 %), OOL (~20 %), SOL + OPO (~10 %), and LLP (~5 %). The oil composition of CW88‐OL and CW99‐OL in main minor components was: α‐tocopherol = 582 and 551 mg/kg, total sterols = 3996 and 3362 mg/kg, phospholipids = 22 and 21 mg/kg and wax content = 70 and 74 mg/kg. For both cultivars, density and viscosity of the oils between 25 and 55 °C varied from 903.4 to 912.6 kg/m3 and 63 to 23 mPa.s showing linear and exponential behaviors, respectively. The refractive index was 1.4694. The CIELab color parameters were: 89.69 and 89.53 (L*), ?3.72 and ?3.07 (a*), and 47.28 and 47.78 (b*) (CW88‐OL and CW99‐OL, respectively). Thus, the high oil content of the seeds and nutritional quality of the oil accompanied by low levels of waxes and phospholipids makes the cultivars studied promising for producers and consumers.  相似文献   

13.
Aqueous enzymatic extraction (AEE) is an environmentally friendly edible‐oil‐extraction process that can also provide edible protein. However, the AEE process may form a stable emulsion in most cases, which seriously limits the large‐scale industry applications for producing vegetable oils. In this study, the salt‐assisted microwave radiation demulsification of the oil‐rich emulsion prepared with AEE from peanuts is investigated. The microwave demulsification method is compared with other conventional demulsification methods, including heating, and freezing–thawing. The salt‐assisted microwave demulsification of the emulsions shows a greater free oil yield than conventional heating demulsification. Moreover, the microwave demulsification shows a similar free oil yield in less time than freezing–thawing method. Under the optimal operating conditions of demulsification, the free oil yield can reach 92.3% with CaCl2‐assisted microwave demulsification for only 2 min. In addition, the oxidative properties and the fatty acid compositions of the demulsified peanut oil are investigated. No significant difference in the fatty acid composition is observed among salt‐assisted microwave, freezing–thawing, and heating demulsified oil. The oxidative properties of the salt‐assisted microwave demulsified peanut oil is better than the conventional heating demulsified oil. Thus, salt‐assisted microwave demulsification provides a quick and effective demulsification method to obtain vegetable oils with high quality. Practical Applications: Aqueous enzymatic extraction (AEE) is an environmentally friendly edible‐oil‐extraction process. To solve the problem of stable emulsion formed during AEE process, the salt‐assisted microwave demulsification of the oil‐rich emulsion prepared with AEE is developed with high efficiency (demulsification for 2 min). In addition, the oxidative properties of the microwave demulsified oil is better than the conventional heating demulsified oil.  相似文献   

14.
This study was undertaken to determine whether triple‐stage mass spectrometry (MS3) could be employed to obtain quantitative and regioisomeric data from complex oil samples without the need for a chromatographic step in the analysis protocol. Lithium‐7 trifluoroacetate and electrospray ionization were used to form lithium adducts of the triacylglycerols (TAG) in a fish oil sample. The first‐generation precursor ion was the lithium‐TAG adduct, the second‐generation precursor ion was formed by loss of a neutral acid side chain in the first fragmentation. The ions used for analysis were formed in the second fragmentation by loss of the lactones of the acid side chains remaining after the first fragmentation. This analysis scheme provided quantitative and regioisomeric data without interference from TAG in the sample other than TAG with the same acyl carbon number, one more double bond, and two acyl side chains in common with the analyte. Even in this case a majority of the interferences could be estimated and compensated. Analysis of synthetic samples containing the fish oil matrix indicated that both absolute and relative quantitative data could be obtained with average errors of approximately 5 %. The method proved well suited to routine analyses of complex oil samples.  相似文献   

15.
16.
17.
Optimization of industrial‐scale deodorization of high‐oleic sunflower oil (HOSO) via response surface methodology is presented in this study. The results of an experimental program conducted on an industrial‐scale deodorizer were analyzed statistically. Predictive models were derived for each of the oil quality indicators (QI) in dependence on the studied variable deodorization process parameters. The deodorization behavior of some minor components was analyzed on a pilot‐scale deodorizer. For comparison, a similar experimental program was also performed on the laboratory‐scale. The results of this study demonstrate that optimization of the deodorization process requires a suitable compromise between often mutually opposing demands dictated by different oil QI. The production of HOSO with top‐quality organoleptic and nutritional values (high tocopherol and phytosterol contents and low free and trans fatty acid contents) and high oxidative stability demands deodorization temperatures in the range between 220 and 235 °C and a total sparge steam above 2.0% (wt/wt in oil). The response surface methodology provides the tools needed to identify the optimum deodorization process conditions. However, the laboratory‐scale experiments, while showing similar response characteristics of QI in dependence on the process parameters and thus helpful as a guide, are of limited value in the optimization of an industrial‐scale operation.  相似文献   

18.
Oil value is determined by the functional qualities imparted from the fatty acid profile. Soybean oil historically had excellent use in foods and industry; the need to increase the stability of the oil without negative health consequences has led to a decline in soybean oil use. One solution to make the oil stable is to have high oleic acid (>70%) and lower linolenic acid content in the oil. Other fatty acid profile changes are intended to target market needs: low‐saturated fatty acid and high stearic acid content in the oil. The objective of this study is to determine the interaction of the high oleic acid oil trait with other alleles controlling fatty acid profiles. Soybean lines containing high oleic acid allele combinations plus other fatty acid modifying alleles were produced, and the seed was produced in multiple field environments over 2 years. Stable high oleic acid with low linolenic acid (<3.0%) was achieved with a 4‐allele combination. The target of >20% stearic acid in the seed oil was not achieved. Reducing total saturated fatty acids below 7% in a high oleic acid background was possible with mutant alleles of both an acyl‐ACP thioesterase B and a β‐ketoacyl‐[acyl‐carrier‐protein] synthase III gene. The results identified allele combinations that met the target fatty acid profile thresholds and were most stable across environments.  相似文献   

19.
The oxidative stability of conventional and high-oleic varieties of commercial vegetable oils, with and without added antioxidants, was evaluated using the oil stability index (OSI). Oil varieties studied were soybean (SOY), partially-hydrogenated soybean (PHSOY), corn (CORN), sunflower (SUN), canola (CAN), high-oleic canola (HOCAN), very high-oleic canola (VHOCAN), oleic safflower (SAF) and high-oleic sunflower (HOSUN). One or more commercial antioxidants were added to the four most stable oils at supplier-recommended levels: rosemary extract (RM; 1,000 ppm), ascorbyl palmitate (AP; 1,000 ppm), tert-butylhydroquinone (TBHQ; 200 ppm), and mixed tocopherols (TOC; 200 ppm). OSI in hours (h) at 110 °C of the conventional oils were 5.2, 7.6, 8.4, 9.8, 10.9 and 14.3 h for SUN, SOY, CAN, CORN, PHSOY and SAF, respectively. OSI of high-oleic variants were 12.9, 16.5 and 18.5 h for HOCAN, HOSUN and VHOCAN, respectively. Maximum OSI values for the four most stable oils when treated with antioxidants, were 40.9, 48.5, 48.8 and 55.7 h for HOCAN, VHOCAN, SAF and HOSUN, respectively. Addition of TBHQ, alone and in combination with other antioxidants, resulted in the greatest increase in oxidative stability of SAF and other high-oleic oils evaluated. AP had a positive synergistic effect when used with TBHQ, while RM decreased TBHQ effectiveness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号