首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxisome proliferator‐activated receptor (PPAR)γ is expressed in adipose tissue and plays a key role in the regulation of adipogenesis. PPARγ activators are known to have potent antihyperglycemic activity and are used to treat insulin resistance associated with diabetes. Therefore, many natural and synthetic agonists of PPARγ are used in the treatment of glucose disorders. In the present study, we found that 13‐oxo‐9(Z),11(E),15(Z)‐octadecatrienoic acid (13‐oxo‐OTA), a linolenic acid derivative, is present in the extract of tomato (Solanum lycopersicum), Mandarin orange (Citrus reticulata), and bitter gourd (Momordica charantia). We also found that 13‐oxo‐OTA activated PPARγ and induced the mRNA expression of PPARγ target genes in adipocytes, thereby promoting differentiation. Furthermore, 13‐oxo‐OTA induced secretion of adiponectin and stimulated glucose uptake in adipocytes. To our knowledge, this is the first study to report that 13‐oxo‐OTA induces adipogenesis through PPARγ activation and to present 13‐oxo‐OTA as a valuable food‐derived compound that may be applied in the management of glucose metabolism disorders.  相似文献   

2.
Hydroxy and oxo fatty acids were recently found to be produced as intermediates during gut microbial fatty acid metabolism. Lactobacillus plantarum produces these fatty acids from unsaturated fatty acids such as linoleic acid. In this study, we investigated the effects of these gut microbial fatty acid metabolites on the lipogenesis in liver cells. We screened their effect on sterol regulatory element binding protein‐1c (SREBP‐1c) expression in HepG2 cells treated with a synthetic liver X receptor α (LXRα) agonist (T0901317). The results showed that 10‐hydroxy‐12(Z)‐octadecenoic acid (18:1) (HYA), 10‐hydroxy‐6(Z),12(Z)‐octadecadienoic acid (18:2) (γHYA), 10‐oxo‐12(Z)‐18:1 (KetoA), and 10‐oxo‐6(Z),12(Z)‐18:2 (γKetoA) significantly decreased SREBP1c mRNA expression induced by T0901317. These fatty acids also downregulated the mRNA expression of lipogenic genes by suppressing LXRα activity and inhibiting SREBP‐1 maturation. Oral administration of KetoA, which effectively reduced triacylglycerol accumulation and acetyl‐CoA carboxylase 2 (ACC2) expression in HepG2 cells, for 2 weeks significantly decreased Srebp1c, Scd1, and Acc2 expression in the liver of mice fed a high‐sucrose diet. Our findings suggest that the hypolipidemic effect of the fatty acid metabolites produced by L. plantarum can be exploited in the treatment of cardiovascular diseases or dyslipidemia.  相似文献   

3.
Whole cells of recombinant Escherichia coli expressing diol synthase from Aspergillus nidulans produced 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid from α‐linolenic acid via 8‐hydroperoxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid as an intermediate. The optimal conditions for 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid production using whole recombinant cells were exhibited at pH 7.0, 40 °C, and 250 rpm with 40 g/L cells, 12 g/L, α‐linolenic acid, and 5 % (v/v) dimethyl sulfoxide in a 250‐mL baffled flask containing 50 mL reaction solution. Under these conditions, whole recombinant cells produced 9.1 g/L 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid for 100 min, with a conversion yield of 75 % (w/w), a volumetric productivity of 5.5 g/L/h, and specific productivity of 137 mg/g‐cells/h. As an intermediate, 8‐hydroperoxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid was observed at approximately 1.4 g/L after 100 min. With regard to dihydroxy fatty acid production, this is the highest reported volumetric and specific productivities thus far. This is the first report on the biotechnological production of 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid.  相似文献   

4.
An enzyme from the alga Chlorella pyrenoidosa, previously identified as a hydroperoxide lyase (HPLS), cleaves the 13‐hydroperoxide derivatives of linoleic and linolenic acids into a volatile C5 fragment and a C13 oxo‐product, 13‐oxo‐9(Z),11(E)tridecadienoic acid (13‐OTA). Gas chromatography/mass spectrometry (GC/MS) headspace analysis of the volatile products indicated the formation of pentane when the substrate was the 13‐hydroperoxide derivative of linoleic acid, whereas a more complex mixture of hydrocarbons was formed when the 13‐hydroperoxide derivative of linolenic acid was the substrate. Analysis of the nonvolatile products by GC/MS and liquid chromatography/mass spectrometry (LC/MS) indicated the formation of 13‐OTA along with the 13‐ketone derivative. This enzymatic activity was inhibited by oxygen but was restored with nitrogen. The enzymatic cleavage activity was coincidental in purified fractions with lipoxygenase activity that produced the 13‐ and 9‐hydroperoxide derivatives of linolenic acid. The results suggest that the enzymatic cleavage activity in Chlorella pyrenoidosa was not a consequence of hydroperoxide lyase activity as previously thought, but was due to anaerobic lipoxygenase activity. This enzyme fraction was purified by (NH4)2 SO4 precipitation, gel filtration, and hydrophobic interaction chromatography. The purified enzyme has an approximate MW of 120 KDa and maximum activity at pH 8.0.  相似文献   

5.
We observed earlier that phytanic acid activated subtype α of the peroxisome proliferator‐activated receptor (PPAR) via the cytosolic liver‐type fatty acid‐binding protein (L‐FABP). In a further search for minor lipid nutrients that interact with genes, we explored here the potential of branched‐chain fatty acids to serve as agonists for the PPAR subtypes α, β and γ in rodent and human molecular test systems. Beyond chlorophyll‐derived pristanic and phytanic acids, bacteria‐derived iso‐ and anteiso‐fatty acids and avian‐derived ‘uropygial’ fatty acids were tested by transactivation assay. In addition, we studied binding of these fatty acids to recombinantly expressed PPAR ligand binding domains (LBDs) and to L‐FABP by competition with fluorescent parinaric acid. In contrast to single methyl‐branched agonists, multi methyl‐branched fatty acids had high transactivation potentials in either test system; in addition, some agonists of the latter were highly subtype selective. Multi methyl‐branched chain fatty acids were superior activators of human PPARγ, a preference not seen in the murine test system. High‐affinity binding of isoprenoid‐derived pristanic and phytanic acids to PPARγ‐LBD and to L‐FABP was observed, and also of pristanic acid to PPARα‐LBD. Polyketidic uropygial fatty acids bound to PPARγ‐LBD only, though weakly. As both isoprenoid and polyketidic fatty acids showed high activation potentials, it became clear that binding data determined in vitro cannot predict biological activity as determined by transactivation assay. For pristanic acid, however, a signalling path similar to that found for phytanic acid can be concluded. Taken together, multi methyl‐branched fatty acids of the human food chain can affect cellular metabolism through regulating gene expression.  相似文献   

6.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator‐activated receptor‐α (PPAR‐α). Compounds that feature an α‐amino‐β‐lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti‐inflammatory effects that are mediated through FAE‐dependent activation of PPAR‐α. We synthesized and tested a series of racemic, diastereomerically pure β‐substituted α‐amino‐β‐lactones, as either carbamate or amide derivatives, investigating the structure–activity and structure–stability relationships (SAR and SSR) following changes in β‐substituent size, relative stereochemistry at the α‐ and β‐positions, and α‐amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β‐position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.  相似文献   

7.
PPARγ agonist DIM‐Ph‐4‐CF 3 , a template for RXRα agonist (E)‐3‐[5‐di(1‐methyl‐1H‐indol‐3‐yl)methyl‐2‐thienyl] acrylic acid: DIM‐Ph‐CF3 is reported to inhibit cancer growth independent of PPARγ and to interact with NR4A1. As both receptors dimerize with RXR, and natural PPARγ ligands activate RXR, DIM‐Ph‐4‐CF3 was investigated as an RXR ligand. It displaces 9‐cis‐retinoic acid from RXRα but does not activate RXRα. Structure‐based direct design led to an RXRα agonist.

  相似文献   


8.
9.
Incubation of [1-14C]linoleic acid with an enzyme preparation obtained from the red algaLithothamnion corallioides Crouan resulted in the formation of 11-hydroxy-9(Z),12(Z)-octadecadienoic acid as well as smaller amounts of 9-hydroxy-10(E),12(Z)-octadecadienoic acid, 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 11-keto-9(Z),12(Z)-octadecadienoic acid. Steric analysis showed that the 11-hydroxyoctadecadienoic acid had the (R) configuration. The 9- and 13-hydroxyoctadecadienoic acids were not optically pure, but were due to mixtures of 75% (R) and 25% (S) enantiomers (9-hydroxyoctadecadienoate), and 24% (R) and 76% (S) enantiomers (13-hydroxy-octadecadienoate). 11-Hydroxyoctadecadienoic acid was unstable at acidic pH. In acidified water, equal parts of 9(R,S)-hydroxy-10(E),12(Z)-octadecadienoate and 13(R,S)-hydroxy-9(Z),11(E)-octadecadienoate, plus smaller amounts of the corresponding (E),(E) isomers were produced. In aprotic solvents, acid treatment resulted in dehydration and in the formation of equal amounts of 8,10,12- and 9,11,13-octadecatrienoates. The enzymatic conversion of linoleic acid into the hydroxyoctadecadienoic acids and the ketooctadecadienoic acid was oxygen-dependent; however, inhibitor experiments indicated that neither lipoxygenase nor cytochrome P-450 were involved in the conversion. This conclusion was supported by experiments with18O2 and H2 18O, which demonstrated that the hydroxyl oxygen of the hydroxy-octadecadienoic acids and the keto oxygen of the 11-ketooctadecadienoic acid were derived from water and not from molecular oxygen. The term “oxylipin” was introduced recently (ref. 1) as an encompassing term for oxygenated compounds which are formed from fatty acids by reaction(s) involving at least one step of mono- or dixoygenase-catalyzed oxygenation.  相似文献   

10.
lsoprenoid phytanic acid (3,7,11,15‐tetramethylhexadecanoic acid) is degraded in peroxisomes by α‐oxidation to pristanic acid (2,6,10,14‐tetramethylpentadecanoic acid) and then via β‐oxidation. Branched‐chain phytanic acid is an activator of the peroxisome proliferator activated receptor α (PPAR ) which in liver cells regulates expression of genes encoding peroxisomal and mitochondrial β‐oxidative enzymes as well as cytosolic/nuclear liver‐type fatty acid binding protein (L‐FABP). In this report we address the question whether pristanic acid also acts as activator of PPARα and thus mediates the expression of its catabolizing enzymes. In a first in vivo approach we fed pristanic acid for 14 days to wildtype mice and to mice lacking sterol carrier protein 2/sterol carrier protein x which Ieads to a phenotype having high concentrations of branched‐chain fatty acids. In either genotype, feeding pristanic acid was associated with a strong induction of peroxisomal β‐oxidation enzymes tested (acyl‐CoA oxidase, bifunctional enzyme, thiolase) as well as of L‐FABP. The link between pristanic acid and protein expression observed was established by carrying out assays for transactivation of PPARα in transfected HepG2 cells. In comparison to hypolipidemic drugs and to straight‐chain fatty acids known to be PPARα agonists, branched‐chain phytanic and pristanic acids were substantially stronger activators, pristanic acid being even superior to phytanic acid.  相似文献   

11.
During our ongoing project on the biosynthesis of R-(+)-octane-1,3-diol the metabolism of linoleic acid was investigated in stored apples after injection of [1-14C]-, [9,10,12,13-3H]-, 13C18- and unlabeled substrates. After different incubation periods the products were analyzed by gas chromatography-mass spectroscopy (MS), high-performance liquid chromatography-MS/MS, and HPLC-radiodetection. Water-soluble compounds and CO2 were the major products whereas 13(R)-hydroxy- and 13-keto-9(Z),11(E)-octadecadienoic acid, 9(S)-hydroxy-and 9-keto-10(E),12(Z)-octadecadienoic acid, and the stereoisomers of the 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids were identified as the major metabolites found in the diethyl ether extracts. Hydroperoxides were not detected. The ratio of 9/13-hydroxy- and 9/13-keto-octadecadienoic acid was 1∶4 and 1∶10, respectively. Chiral phase HPLC of the methyl ester derivatives showed enantiomeric excesses of 75% (R) and 65% (S) for 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 9-hydroxy-10(E),12(Z)-octadecadienoic acid, respectively. Enzymatically active homogenates from apples were able to convert unlabeled linoleic acid into the metabolites. Radiotracer experiments showed that the transformation products of linoleic acid were converted into (R)-octane-1,3-diol. 13(R)-Hydroxy-9(Z), 11(E)-octadecadienoic acid is probably formed in stored apples from 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid. It is possible that the S-enantiomer of the hydroperoxide is primarily degraded by enzymatic side reactions, resulting in an enrichment of the R-enantiomer and thus leading to the formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid.  相似文献   

12.
Recently, corn (Zea mays L.) hydroperoxide dehydrase was found to catalyze the conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid into an unstable fatty acid allene oxide, 12,13(S)-epoxy-9(Z),11-octadecadienoic acid. This study is concerned with the chemistry of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid in the presence of vertebrate serum albumins. Albumins were found to greatly enhance the aqueous half-life of the allene oxide, i.e. 14.1±1.8 min, 11.6±1.2 min and 4.8±0.5 min at 0 C in the presence of 15 mg/ml of bovine, human and equine serum albumins, respectively, as compared with ca. 33 sec in the absence of albumin. Degradation of allene oxide in the presence of bovine serum albumin led to the formation of a novel cyclization product, i.e. 3-oxo-2-pentyl-cyclopent-4-en-1-octanoic acid (12-oxo-10-phytoenoic acid, in which the relative configuration of the side chains attached to the five-membered ring istrans). Steric analysis of the cyclic derivative showed that the compound was largely racemic (ratio between enantiomers, 58∶42). 12-Oxo-10,15(Z)-phytodienoic acid, needed for reference purposes, was prepared by incubation of 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid with corn hydroperoxide dehydrase. Steric analysis showed that the 12-oxo-10,15(Z)-phytodienoic acid thus obtained was not optically pure but a mixture of enantiomers in a ratio of 82∶18. The first paper in this series is Reference 1.  相似文献   

13.
The title compounds were prepared by six different routes, and recommendations are given for the more convenient procedures in laboratory-scale syntheses. Modifications in the literature preparations of the 9E,11E and 9E,11Z isomers are described. Baseline separation of a prepared mixture of all four isomers of the (9Z, 11Z), (9E, 11E), (9E, 11Z), and (9Z, 11E)-9,11-hexadecadienals was achieved using GC methods with standard capillary columns. [13C]NMR spectroscopy of the alkene carbon atoms clearly differentiates between theZ,Z, E,E and eitherE,Z orZ,E isomers of the precursor dienols and thus of the dienals.  相似文献   

14.
Based on 3‐(((4‐(hexylamino)‐2‐methoxyphenyl)amino)sulfonyl)‐2‐thiophenecarboxylic acid methyl ester (ST247, compound 2 ), a recently described peroxisome proliferator‐activated receptor (PPAR)β/δ‐selective inverse agonist, we designed and synthesized a series of structurally related ligands. The structural modifications presented herein ultimately resulted in a series of ligands that display increased cellular activity relative to 2 . Moreover, with methyl 3‐(N‐(2‐(2‐ethoxyethoxy)‐4‐(hexylamino)phenyl)sulfamoyl)thiophene‐2‐carboxylate (PT‐S264, compound 9 u ), biologically relevant plasma concentrations in mice were achieved. The compounds presented in this study will provide useful novel tools for future investigations addressing the role of PPARβ/δ in physiological and pathophysiological processes.  相似文献   

15.
Polyfunctional molecules, 1,5‐enynes, have been achieved via a palladium(0)‐catalyzed domino coupling reaction of (Z)‐β‐bromostyrenes with norbornenes in the presence of cesium carbonate and N,N‐dimethylformamide. The process involves a double Heck‐type procedure, two‐fold C(sp2) H activation and formation of two carbon‐carbon bonds. There are possibilities of diversified transformation for the domino coupling of (Z)‐β‐bromostyrenes with norbornenes, the procedure is successfully driven to 1,5‐enynes via accurate adjustment of the reaction conditions.

  相似文献   


16.
The palladium‐catalyzed addition of phosphine to allene in the presence of methanesulfonic acid stereoselectively gives the (E)‐ or (Z)‐allylphosphonium salt. The (E)‐allylphosphonium salt is formed by performing the reaction in THF under reflux and the (Z)‐allylphosphonium salt is obtained at –10 °C. The (E)‐ and (Z)‐allylphosphonium salts are used in the Wittig olefination reaction, and their diastereoselectivities are compared.  相似文献   

17.
Δ6‐desaturase is located in a pivotal position in the metabolism of essential fatty acids (EFA). Various methods have been used to estimate Δ6‐desaturase activity, including the assessment of: (i) tissue fatty acid compositions (and associated product/precursor ratios), (ii) Δ6‐desaturase activities ex vivo, and (iii) isotopically labelled linoleic acid metabolism in vivo. This review critically examines these methods and considers their appropriateness and reliability in assessing linoleic acid metabolism in diabetes and cardiovascular disease. In general, there was a good agreement between the three methods and the effect of experimental diabetes on linoleic acid metabolism. In humans, however, the effect of diabetes on tissue fatty acid composition was inconsistent, and there was a paucity of data on linoleic acid metabolism ex vivo and in vivo. The inconsistency in human fatty acid compositional data may relate to variable and uncontrolled intakes of linoleic acid and its n‐6 metabolites, but also to a less extreme insulin deficiency as studied in animals. Risk markers for cardiovascular disease generally reduced rat liver Δ6‐desaturase activity ex vivo. This was not, however, reflected in tissue fatty acid compositions in these controlled studies. Linoleic acid metabolism, as determined by tissue fatty acid composition in humans, is reduced in cardiovascular disease; however, the omnivorous dietary patterns and decreased linoleic acid intakes make this conclusion potentially unreliable. Few stable‐isotope studies have been conducted on the effect of cardiovascular risk markers on linoleic acid metabolism, and there is a requirement for this type of work to be standardised to facilitate inter‐study comparisons. These studies may eventually help optimise EFA intake in health and disease conditions.  相似文献   

18.
It is known that fatty acids (FA) regulate lipid metabolism by modulating the expression of numerous genes. In order to gain a better understanding of the effect of individual FA on lipid metabolism related genes in rainbow trout (Oncorhynchus mykiss), an in vitro time‐course study was implemented where twelve individual FA (butyric 4:0; caprylic 8:0; palmitic (PAM) 16:0; stearic (STA) 18:0; palmitoleic16:1n‐7; oleic 18:1n‐9; 11‐cis‐eicosenoic 20:1n‐9; linoleic (LNA) 18:2n‐6; α‐linolenic (ALA) 18:3n‐3; eicosapentenoic (EPA) 20:5n‐3; docosahexaenoic (DHA) 22:6n‐3; arachidonic (ARA) 20:4n‐6) were incubated in rainbow trout liver slices. The effect of FA administration over time was evaluated on the expression of leptin, PPARα and CPT‐1 (lipid oxidative related genes). Leptin mRNA expression was down regulated by saturated fatty acids (SFA) and LNA, and was up regulated by monounsaturated fatty acids (MUFA) and long chain PUFA, whilst STA and ALA had no effect. PPARα and CPT‐1mRNA expression were up regulated by SFA, MUFA, ALA, ARA and DHA; and down regulated by LNA and EPA. These results suggest that there are individual and specific FA induced modifications of leptin, PPARα and CPT‐1 gene expression in rainbow trout, and it is envisaged that such results may provide highly valuable information for future practical applications in fish nutrition.  相似文献   

19.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine hydrolase that catalyzes the hydrolysis of endogenous lipid mediators such as palmitoylethanolamide (PEA). PEA has been shown to exert anti‐inflammatory and antinociceptive effects in animals by engaging peroxisome proliferator‐activated receptor α (PPAR‐α). Thus, preventing PEA degradation by inhibiting NAAA may provide a novel approach for the treatment of pain and inflammatory states. Recently, 3‐aminooxetan‐2‐one compounds were identified as a class of highly potent NAAA inhibitors. The utility of these compounds is limited, however, by their low chemical and plasma stabilities. In the present study, we synthesized and tested a series of N‐(2‐oxoazetidin‐3‐yl)amides as a novel class of NAAA inhibitors with good potency and improved physicochemical properties, suitable for systemic administration. Moreover, we elucidated the main structural features of 3‐aminoazetidin‐2‐one derivatives that are critical for NAAA inhibition.  相似文献   

20.
The copolymers of (Z)‐4‐oxo‐4‐phenoxyl‐2‐butenoic acid with styrene (PSt/OPBA) and their macromolecular luminous lanthanide complexes (Ln‐PSt/OPBA) have been synthesized and characterized by means of GPC, elemental analysis, FTIR, X‐ray powder diffraction, spectral analysis, and thermal analysis. The IR studies showed that the carboxylic groups on the side chain of the polymer were coordinated to lanthanide ions by bidentate manner. However, the ethereal oxygen, instead of carbonyl, also bonded to the central lanthanide ions, which was an intriguing phenomenon for ester‐coordinated complexes. X‐ray diffraction experiments revealed that these PSt/OPBA copolymers were amorphous, but Ln‐PSt/OPBA were crystalline, in which the complex Eu‐Lc belonged to a high symmetric structure of orthorhombic quadratic system, with a = 10.59 ± 0.02 Å, c = 8.02 ± 0.01 Å; c/a = 0.763. In addition, the value δ (the number of free carboxylic groups) in Ln‐PSt/OPBA complexes increased with the decreasing mole ratio of styrene in the copolymers, while it decreased with increasing pH values of the solution. Eu3+ and Tb3+ complexes exhibited characteristic fluorescence with comparatively high brightness and good monochromaticity, and the fluorescence intensity was enhanced with increasing the content of lanthanide up to around 18 wt % without typical fluorescence concentration quenching behavior in the solid state. So using polymers as a matrix, Ln‐PSt/OPBA are likely to provide new materials that possess specific properties and desired features. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号