首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of cis‐9,10‐epoxystearate, trans‐9,10‐epoxystearate, cis‐9,10‐epoxyoleate, cis‐12,13‐epoxyoleate, trans‐9,10‐epoxyoleate, trans‐12,13‐epoxyoleate and the co‐eluting 9‐ and 10‐ketostearates during eight successive pan‐ and deep‐frying sessions of pre‐fried potatoes in five different types of vegetable oils – namely cottonseed oil, sunflower oil, vegetable shortening, palm oil and virgin olive oil – was followed and quantified both in fried oils and in fried potatoes by GC/MS after derivatization to methyl esters. These oxidized fatty acids were present at relatively low concentrations in the fresh oils and pre‐fried potatoes while they increased linearly with frying time, reaching up to 1140.8 µg/g in virgin olive oil (VOO) and 186.9 µg/g in potatoes pan‐fried in VOO after eight pan‐frying sessions, with trans‐9,10‐epoxystearate predominating in all cases. The formation of polymerized triacylglycerols (PTG) was also quantified in frying oils by size exclusion HPLC. Pan‐frying caused higher oxidized fatty acid and PTG formation compared to deep‐frying. Epoxyoleates and PTG concentrations were increased after frying in polyunsaturated oils, while epoxystearate and 9‐ and 10‐ketostearate concentrations were increased after frying in monounsaturated oils. No specific absorption of the oxidized fatty acids by the fried potatoes seems to occur. The dietary intake of oxidized fatty acids and PTG by the consumption of fried potatoes was discussed.  相似文献   

2.
The wax ester fraction of various plant oils was isolated by normal‐phase HPLC (NPLC) on‐line coupled to GC via the on‐column interface and applying concurrent eluent evaporation. The esters were analyzed by on‐line NPLC‐GC‐MS and by comprehensive two‐dimensional GC with flame ionization detection (GC×GC‐FID) off‐line combined with NPLC‐GC. GC×GC‐FID enables to group the various classes of wax esters, in particular the phytol esters, geranylgeraniol esters and the straight‐chain esters of palmitic acids and the unsaturated C18 acids. Optimization of the GC×GC columns and the conditions must take into account the limited thermostability of the diterpene esters. Chromatograms are shown for a range of oils, with particular focus on the various classes of wax esters in olive oil and the geranylgeraniol esters 22:0 and 24:0 in a variety of oils.  相似文献   

3.
A method for the determination of total 3‐chloropropane‐1,2‐diol (3‐MCPD) in edible fats and oils was presented. 3‐MCPD was released from 3‐MCPD fatty acid esters by transesterification with NaOCH3/methanol. After derivatization with phenylboronic acid, 3‐MCPD was determined by GC‐MS. Deuterium‐labeled 3‐MCPD was used as internal standard. In a model experiment, it was shown that acidic hydrolysis with methanol/sulfuric acid, which is normally used for the release of 3‐MCPD from its esters, can cause problems because under acidic conditions additional 3‐MCPD can be formed. No additional 3‐MCPD was formed using NaOCH3/methanol for transesterification. Eleven samples of cold‐pressed and refined safflower oils were analyzed with this method. Levels of total 3‐MCPD were in the range from <100 up to 3200 µg/kg.  相似文献   

4.
The fatty acid compositions of vegetable or other plant seed oils are generally determined by gas chromatography (GC). Methyl esters (the most volatile derivatives) are the preferred derivatives for GC analysis. Esters of higher alcohols are good for the separation of volatile and positional isomers. All the esters of the C1–C8 alcohols of vegetable oils were silmilarly prepared by passing the reaction mixture containing the desired alcohol, oil and tetrahydrofuran through the micro‐reactor (a 3‐mL dispossible syringe packed with 0.5 g of NaOH powder). The reaction products were acidified with acetic acid and the mixture was analyzed by high‐performance size exclusion chromatography and GC. Transesterification was quantitative for primary alcohols, but an appreciable amount of free fatty acids was formed for secondary alcohols. Coriander seed oil was quantitatively esterified with 2‐ethyl 1‐hexanol with the micro‐reactor in less than 1 min. Oleic and petroselinic acid 2‐ethyl 1‐hexyl esters are baseline separated on an Rtx‐2330 capillary column (30 m×0.25 mm, 0.25 µm film thickness).  相似文献   

5.
The voltammetric behavior of naphthoquinone in the presence of free fatty acids (FFA) at the polypyrrole (PPy)‐modified electrode was investigated in an ethanol/1,2‐dichloroethane (3 : 1) solution containing 0.1 M LiClO4. A well‐defined new reduction peak appeared at a more positive potential and was higher than that obtained at the bare Pt electrode. Based on the fact that the new reduction peak current showed a good correlation with the concentration of fatty acids, an electroanalytical method for the acid value (AV) of vegetable oils was developed using the PPy‐modified electrode in linear potential sweep voltammetry. The experimental parameters were optimized to obtain a sensitive voltammetric response in this work. A linear calibration graph was obtained in the concentration range of 5.0×10–6–6×10–3 M for FFA (R = 0.993), with a sensitivity of 2.41×10–2 A L/mol and a detection limit of 1.2×10–6 M (S/N = 3). Each assay of vegetable oil sample took about 80 s. The developed method is applied to the AV determination of six commercial vegetable oils. The results well agreed with those obtained by the titration method. Compared to the conventional titration method, the proposed method is superior in sensitivity and accuracy and requires a small amount of vegetable oil sample, with no pretreatment.  相似文献   

6.
On‐line liquid chromatography‐gas chromatography (LC‐GC) has been applied to the detection of vegetable oils in milk fat using β‐sitosterol as marker. The method involves transesterification of the fat, pre‐separation of the sterol fraction from other lipid constituents and on‐line transfer to the capillary GC system. The on‐line approach avoids time‐consuming sample preparation steps prior to GC analysis. The suitability of this analytical approach was tested with model mixtures of milk fat with cotton and rapeseed oil. The method allows the detection of adulterations at low levels. Simultaneous quantification of cholesterol in milk fat is also possible. Considering the rapid sample preparation, the described method can be applied for screening of large sample numbers.  相似文献   

7.
The effects of individual steps of industrial refining on the alteration of triacylglycerides (TAG) are reported. The level of dimer triglycerides, normally not present in crude oils, increased after each refining step, especially after steam‐washing and desodorisation. A good correlation between the applied temperatures and dimer triglycerides content was found. The forming of dimer triglycerides starts at 90 °C and increases corresponding to the extension of thermal treatment like normal heating or desodorisation. The data for various types of vegetable oils demonstrate that there is no clear‐cut different tendency to form dimers. Heated oils with different contents of linoleic acid produced nearly the same amount of dimers. Other criteria, like the determination of trans fatty acids, steradienes, or the UV‐absorption, were found not to be appropriate to detect a thermal treatment at temperatures below 150—170 °C. The formation of steradienes mainly depends on the total sterol contents, the percentage of added bleaching earth, and its acidity and moisture. Over 160 commercial vegetable oil samples were analysed to obtain a data range on the content of dimerised triglycerides. Mostly, vegetable oils Iabelled as non‐refined (which may be steam‐washed) did not exceed dimer contents of 0.1%. Virgin vegetable oils did not contain dimers (< 0.05%). The content of dimer triglycerides in vegetable oils was determined by a new method via clean‐up on a short silica gel column, followed by size‐exclusion HPLC with refractive index detection.  相似文献   

8.
Table olive processing produces defective fruits and the conditioning operations give rise to solid by‐products which are processed to obtain oil. In this study, the most relevant characteristics of crude oils extracted from table olive by‐products were high average acidity values (4.5%, green olives; 8.1%, ripe olives), ECN42 values of 0.34 (green olives) and 0.10 (ripe olives), while 2‐mono‐palmitin averaged 0.92%. The overall content of sterols was 2257 mg/kg (green olives) and 1746 mg/kg (ripe olives), while the concentration of cholesterol was 36 mg/kg (green olives) and 19 mg/kg (ripe olives). The effect of refining was mainly reflected by a decrease in acidity and sterols. Although most characteristics were in agreement with the established regulation for olive oil, the overall trans fatty acid content, the low apparent β‐sitosterol content, and the relatively high cholesterol content prevented their inclusion into classes of crude or refined lampante or pomace olive oils, not even into the vegetable oil category. Therefore, the oils analyzed should be considered for non‐edible purposes. The physicochemical characteristics used for chemometric discrimination permitted discrimination among types of oils (crude, 100%; physically refined, 90%; chemically refined, 100%), elaboration styles (green and ripe olives, 100%) and cultivars (Gordal, Manzanilla, Hojiblanca and Cacereña, 100%), with the sterol composition being the most useful parameter for discrimination.  相似文献   

9.
Some frying by‐products of medium polarity, so‐called medium‐polarity materials (MPM), produced during domestic deep‐frying of French‐fried potatoes in edible vegetable oils, have recently been isolated and linearly correlated to % total polar materials and % polymerized triglycerides. The in vitro oxidation of low‐density lipoproteins in a dose‐dependent manner by MPM has also been reported. In the present study, the MPM constituents were identified after extraction of MPM from the oils, subsequent purification by RP‐HPLC, and GC‐MS analysis. The main constituent of MPM was trans,trans‐2,4‐decadienal, a compound that has previously been reported to be formed during peroxidation of linoleic and arachidonic acid. 2,4‐Decadienal was also quantified in oils and fats used for frying in restaurants in Athens, Greece, by direct injection of oil sample solutions in HPLC. For the most commonly used frying oils, 2,4‐decadienal concentration ranges were 0.3–119.7 mg/kg for sunflower oil, 13.3–92.7 mg/kg for cottonseed oil, 4.1–44.9 mg/kg for palm oil, and 2.0–11.3 mg/kg for vegetable cooking fats. Considering the common catering practices of frying, 2,4‐decadienal was more likely to be found in sunflower oil after deep‐frying of potatoes. Comparing the amounts of this aldehyde found in oils from restaurants to the amounts previously found for domestic frying (up to 30 mg/kg after the 8th successive frying session in sunflower oil), the probability of consuming a level of 2,4‐decadienal in restaurant‐prepared food that is higher than the level in home‐fried food was determined to be approximately one third.  相似文献   

10.
BACKGROUND: The study is focused on (i) screening and taxonomic identity of a bacterial strain for biosurfactant production, and (ii) evaluation of its potential for production of a biosurfactant using agro‐based feedstock(s) and characterization of it for application in the removal of heavy metals. RESULTS: The production of biosurfactant by an isolate Pseudomonas aeruginosa AB4 (identified on the basis of 16S rRNA analysis) using various cost‐effective substrates were examined at conditions 40 °C, 120 rpm for 7 days. It revealed maximum (40 gL?1) rhamnolipids production and 46% reduction of initial surface tension. Its optimum production was achieved at (i) C:N ratio 10:0.6, (ii) pH 8.5 and (iii) 40 °C. The cell–free supernatant examined for biosurfactant activity by (i) haemolytic assay, (ii) CTAB‐ methylene blue assay, (iii) drop collapse test, (iv) oil spreading technique and (v) EI 24 assay showed its glycolipid nature and stable emulsification. Analysis of partially purified rhamnolipids by (i) thin layer chromatography (TLC), (ii) high performance thin layer chromatography (HPTLC), (iii) high performance liquid chromatography (HPLC), (iv) Fourier transform infrared (FT‐IR) and (v) gas chromatography–mass spectrometry (GC‐MS) confirmed its structure as methyl ester of 3‐hydroxy decanoic acid (a glycolipid) with two major structural congeners (Rha‐C10‐C10 and Rha‐C10‐C8) of mono‐rhamnolipids. Finally, it showed sequestration of Cd and Pb, suggesting its application in biosurfactant‐assisted heavy metal bioremediation. CONCLUSION: This work has screened and identified a bacterium with superior biosurfactant production capabilities, characterized the glycolipidic biosurfactants as rhamnolipid and indicated the feasibility of biosurfactant production using novel renewable, relatively inexpensive and easily available resources such as non‐edible vegetable de‐oiled seed cakes and showed its utility in remediation of heavy metals. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
Several nut oil varieties mainly used as culinary and overall healthy food ingredients were subject of the present study. Headspace solid‐phase microextraction combined with gas chromatography‐mass spectrometry was employed in order to determine the qualitative composition of volatile compounds. Furthermore, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry was used in order to assess the profiles and relative composition of the prevalent triacylglycerols (TAG) within the oils. The headspace of the majority of oil samples was dominated by high contents of acetic acid (up to 42%) and hexanal (up to 32%). As nut oils are typically gained by cold‐pressing from previously roasted nuts, characteristic pyrazine derivatives as well as degradation products of long‐chain fatty acids were detected. TAG analysis of these oils revealed a quite homogeneous composition dominated by components of the C52 and C54 group composed mainly of oleic (18:1), linoleic (18:2), stearic (18:0) and palmitic (16:0) acid residues representing together between 65 and 95% of the investigated nut oils. The TAG profiles showed characteristic patterns which can be used as ‘fingerprints’ of the genuine oils. Nut oils exhibiting quite similar fatty acid composition (e.g. hazelnut, pistachio and beech oil) could be clearly discriminated based on TAG showing significant differences between the oils.  相似文献   

12.
Mislabeling of olive oil with respect to its geographical origin is a frequently encountered fraud. Although according to European Regulation (EU) No 29/2012 it is mandatory to declare the geographical origin of an olive oil on the label, no generally accepted analytical method exists to verify this labeling. As Italy, Greece, and Spain are the main producing countries in the Mediterranean Area, the aim is to develop an analytical method that allows classification of these three origins and which can be reliably applied to routine samples. A protocol for the extraction and subsequent 1H‐NMR measurement of the polar fraction of olive oil is developed and applied to a large number of authentic reference samples. A classification model is developed which obtains 96% of correct classification during cross‐validation. The method is being routinely applied for testing commercial off‐the‐shelf olive oils, and its accuracy is continuously verified. Practical Applications: In addition to checking the geographical origin of an olive oil, the developed protocol allows to analyze the polar constituents of an olive oil in great detail with little effort, which should prove useful also for other applications, for example, quantitation of phenols or detection of admixtures with other vegetable oils.  相似文献   

13.
The oxidative stability index (OSI) of fatty acid methyl esters (FAME) and trimethylolpropane (TMP) esters or TMPE produced from five vegetable oils (Brassica rapa L., Linum usitatissimum L., Zea mays L., Brassica napus L., Camelina sativa L.) are compared. The highest stability is observed in vegetable oils while the processed products are less stable. The major causes in loss of OSI are attributed to excess FAME in the crude product and the loss of natural antioxidants due to refinement with silica and celite. The low‐temperature flow properties of TMPE produced from four different vegetable oils (B. juncea L., L. usitatissimum L., B. rapa L., and C. sativa L.) are investigated by proton nuclear magnetic resonance (1H‐NMR). The T2 relaxations of different TMPE are measured to observe how the mobility of oil changed as temperature decreased. Increased oil mobility (represented by T2) is correlated with rising temperature. The Gaussian widths of the singlet in 1H‐NMR spectra of each oil demonstrated increased molecular mobility as temperature increased. Extrapolation of the relation of T2 signals of these four oils indicates that T2 approached zero between 232 K and 239 K, suggesting the molecular motion leading to a T2 relaxation has largely ceased. Practical Applications: The OSI is determined for four vegetable oils as well as the product FAME and TMPE. The vegetable oils are more stable than their products. The loss of natural antioxidants during purification of FAME and TMPE contributes to the lower OSI compared to vegetable oil. The low‐temperature flow behavior of TMP‐based biolubricants is determined between 238 K and 298 K using T2 relaxation. As temperature decreases, a singlet resonance in 1H‐NMR spectra attributed to TMP protons broadens until it disappears. The results suggest that the log of the spin‐spin relaxation time is linearly correlated with rising temperature and oil mobility.  相似文献   

14.
Sohn JH  Taki Y  Ushio H  Ohshima T 《Lipids》2005,40(2):203-209
A flow injection analysis (FIA) system coupled with a fluorescence detection system using diphenyl-1-pyrenylphosphine (DPPP) was developed as a highly sensitive and reproducible quantitative method of total lipid hydroperoxide analysis. Fluorescence analysis of DPPP oxide generated by the reaction of lipid hydroperoxides with DPPP enabled a quantitative determination of the total amount of lipid hydroperoxides. Use of 1-myristoyl-2-(12-((7-nitro-2-1,3-benzoxadiazol-4-yl)amino) dodecanoyl)-sn-glycero-3-phosphocholine as the internal standard improved the sensitivity and reproducibility of the analysis. Several commercially available edible oils, including soybean oil, rapeseed oil, olive oil, corn oil, canola oil, safflower oil, mixed vegetable oils, cod liver oil, and sardine oil were analyzed by the FIA system for the quantitative determination of total lipid hydroperoxides. The minimal amounts of sample oils required were 50 μg of soybean oil (PV=2.71 meq/kg) and 3 mg of sardine oil (PV=0.38 meq/kg) for a single injection. Thus, sensitivity was sufficient for the detection of a small amount and/or low concentration of hydroperoxides in common edible oils. The recovery of sample oils for the FIA system ranged between 87.2±2.6% and 102±5.1% when PV ranged between 0.38 and 58.8 meq/kg. The CV in the analyses of soybean oil (PV=3.25 meq/kg), cod liver oil (PV=6.71 meq/kg), rapeseed oil (PV=12.3 meq/kg), and sardine oil (PV=63.8 meq/kg) were 4.31, 5.66, 8.27, and 11.2%, respectively, demonstrating sufficient reproducibility of the FIA system for the determination of lipid hydroperoxides. The squared correlation (r 2) between the FIA system and the official AOCS iodometric titration method in a linear regression analysis was estimated at 0.9976 within the range of 0.35−77.8 meq/kg of PV (n=42). Thus, the FIA system provided satisfactory detection limits, recovery, and reproducibility. The FIA system was further applied to evaluate changes in the total amounts of lipid hydroperoxides in fish muscle stored on ice.  相似文献   

15.
The utilization of renewable resources for the preparation of new materials is an alternative option for reducing the high demand of fossil feedstocks. Vegetable oils are potential bioresources that are renewable and abundantly available. Triglyceride‐based vegetable oils, such as soybean, jatropha, linseed, sunflower, palm, castor, nahar seed, and canola oil, are being considered as precursors in the production of polymers. In this article, we attempt to summarize advancements in processes and technologies for the synthesis of polymers from various kinds of vegetable oils. The advantages and disadvantages of these biobased polymers with respect to traditional monomer‐based ones are also highlighted. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40787.  相似文献   

16.
High performance thin layer chromatography (HPTLC) has been used for the simultaneous determination of pentaerythritol tetranitrate (PETN) and 2,4,6‐trinitrotoluene (TNT). With this aim, the spots were developed on silica gel 60 F254 layers with petroleum ether–acetone (2 : 1 v/v). Both PETN and TNT compounds were separated from other constituent materials, and were developed at the same speed, by this solvent system. Then ultraviolet (UV) spectra of these materials were recorded with TLC‐scanner3 of CAMAG Company, and partial least squares regression‐2 (PLSR‐2) method was applied for the calibration and quantitative determination of these materials. The figure of merit (FOM) of this method was determined, and the method was applied for the analysis of an artificial sample.  相似文献   

17.
Some frying by‐products of medium polarity called medium polarity materials (MPMs) were isolated by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) from three different cooking oils used for frying during the domestic successive deep‐frying of potatoes. The cooking oils investigated were virgin olive oil, sunflower oil and a vegetable shortening oil. The relative RP‐HPLC increments of the MPM fractions showed a significant correlation to the total polar material and to the polymerised triacylglycerol increment. They could be used as a new method for the assessment of fried oil deterioration. The capillary gas chromatography/mass spectrometry analysis revealed two main groups of peaks for the MPM fractions, which are almost identical in the three examined oils. This indicates that the MPM constituents rather result from the triglycerides than from minor constituents of the oils.  相似文献   

18.
Aqueous enzymatic extraction (AEE) is an environmentally friendly edible‐oil‐extraction process that can also provide edible protein. However, the AEE process may form a stable emulsion in most cases, which seriously limits the large‐scale industry applications for producing vegetable oils. In this study, the salt‐assisted microwave radiation demulsification of the oil‐rich emulsion prepared with AEE from peanuts is investigated. The microwave demulsification method is compared with other conventional demulsification methods, including heating, and freezing–thawing. The salt‐assisted microwave demulsification of the emulsions shows a greater free oil yield than conventional heating demulsification. Moreover, the microwave demulsification shows a similar free oil yield in less time than freezing–thawing method. Under the optimal operating conditions of demulsification, the free oil yield can reach 92.3% with CaCl2‐assisted microwave demulsification for only 2 min. In addition, the oxidative properties and the fatty acid compositions of the demulsified peanut oil are investigated. No significant difference in the fatty acid composition is observed among salt‐assisted microwave, freezing–thawing, and heating demulsified oil. The oxidative properties of the salt‐assisted microwave demulsified peanut oil is better than the conventional heating demulsified oil. Thus, salt‐assisted microwave demulsification provides a quick and effective demulsification method to obtain vegetable oils with high quality. Practical Applications: Aqueous enzymatic extraction (AEE) is an environmentally friendly edible‐oil‐extraction process. To solve the problem of stable emulsion formed during AEE process, the salt‐assisted microwave demulsification of the oil‐rich emulsion prepared with AEE is developed with high efficiency (demulsification for 2 min). In addition, the oxidative properties of the microwave demulsified oil is better than the conventional heating demulsified oil.  相似文献   

19.
4‐Hydroxy‐2‐trans‐nonenal (HNE) is a toxic aldehyde produced mostly in oils containing polyunsaturated fatty acid due to heat‐induced lipid peroxidation. The present study examined the effects of the heating time, the degree of unsaturation, and the antioxidant potential on the formation of HNE in two light olive oils (LOO) and two sunflower oils (one high oleic and one regular) at frying temperature. HNE concentrations in these oil samples heated for 0, 1, 3, and 5 hours at 185 °C were measured using high‐performance liquid chromatography. The fatty‐acid distribution and the antioxidant capacity of these four oils were also analyzed. The results showed that all oils had very low HNE concentrations (<0.5 μg g?1 oil) before heating. After 5 hours of heating at 185 °C, HNE concentrations were increased to 17.98, 25.00, 12.51, and 40.00 μg g?1 in the two LOO, high‐oleic sunflower oil (HOSO), and regular sunflower oil (RSO), respectively. Extending the heating time increased HNE formation in all oils tested. It is related to their fatty‐acid distributions and antioxidant capacities. RSO, which contained high levels of linoleic acid (59.60%), a precursor for HNE, was more susceptible to degradation and HNE formation than HOSO and LOO, which contained only 6–8% linoleic acid.  相似文献   

20.
Trans,trans‐2,4‐decadienal is a by‐product of frying oil that is also transferred to fried food. This aldehyde has been found and quantified both in frying oils and fumes generated during frying. Furthermore, it has been reported that 2,4‐decadienal has cytotoxic and genotoxic effects and promotes LDL oxidation. In the present work trans,trans‐2,4‐decadienal was detected directly in fried potatoes (french‐fries). Moreover, the influence of frying conditions (deep‐frying, pan‐frying), the oil type (olive oil, sunflower oil, cottonseed oil, palm oil and a vegetable shortening) and the degree of thermal deterioration (eight successive frying sessions without replenishment) on the production of 2,4‐decadienal in oil and potatoes was studied. The isolation of the aldehyde was performed by methanol extraction, while the identification and quantification was performed by RP‐HPLC. The quantity of trans,trans‐2,4‐decadienal produced during successive pan‐frying demonstrated a peak at the third and fourth frying session. The highest concentration of trans,trans‐2,4‐decadienal was detected in potatoes fried in sunflower oil, and the lowest in olive oil. The quantity of trans,trans‐2,4‐decadienal in fried potatoes decreased during successive deep‐frying at the seventh frying session or remained stable, except for cottonseed oil. The quantity of trans,trans‐2,4‐decadienal in fried potatoes was considered to be dependent on the oil used, on the frying process and, to a lesser extent, on the oil deterioration. In all cases tested, the highest concentration of trans,trans‐2,4‐decadienal was detected during deep‐frying. The unsaturation degree of the frying oil was considered to promote the formation of trans,trans‐2,4‐decadienal. Considering the quantity of 2,4‐decadienal found in french‐fries and in the respective frying medium, direct quantification of 2,4‐decadienal is required in order to make an estimation of intake from french‐fries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号