首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To investigate the relationship between structure and activity, three glucocerebroside series (CFC‐1, CFC‐2 and CFC‐3), ceramides (CF‐Cer) and long‐chain bases (CF‐LCB) of sea cucumber Cucumaria frondosa (C. frondosa) were isolated and evaluated in HepG2 cells. The molecular species of CFC‐1, CFC‐2 and CFC‐3 and CF‐Cer were identified using reversed‐phase liquid chromatography with heated electrospray ionization coupled to high‐resolution mass spectrometry (RPLC‐HESI‐HRMS), and determined on the basis of chemical and spectroscopic evidence: For the three glucocerebroside series, fatty acids (FA) were mainly saturated (18:0 and 22:0), monounsaturated (22:1, 23:1 and 24:1) and 2‐hydroxyl FA (2‐HFA) (23:1 h and 24:1 h), the structure of long‐chain bases (LCB) were dihydroxy (d17:1, d18:1 and d18:2) and trihydroxy (t16:0 and t17:0), and the glycosylation was glucose; For CF‐Cer, FA were primarily saturated (17:0) and monounsaturated (16:1 and 19:1), the structure of LCB were dihydroxy (d17:1 and d18:1), and trihydroxy (t16:0). The results of cell experiment indicated that all of three glucocerebroside series, CF‐Cer and CF‐LCB exhibited an inhibitory effects on cell proliferation. Moreover, CFC‐3 was most effective in three glucocerebrosides to HepG‐2 cell viability. The inhibition effect of CF‐LCB was the strongest, and the inhibition effect of CF‐Cer was much stronger than glucocerebrosides.  相似文献   

2.
Pseudomonas aeruginosa 42A2 is known to produce two hydroxy‐fatty acids, 10(S)‐hydroxy‐8(E)‐octadecenoic and 7,10(S,S)‐dihydroxy‐8(E)‐octadecenoic acids, when cultivated in a mineral medium using oleic acid as a single carbon source. These compounds were purified, 91 and 96 % respectively, to produce two new families of estolides: trans‐8‐estolides and saturated estolides from the monohydroxylated monomer. trans‐8‐estolides were produced by three different lipases (Novozym 435, Lipozyme RM IM and Lipozyme TL IM) with reaction yields between 68.4 ± 2.1 and 94.7 ± 2.4 % in a solvent‐free medium at 80 °C in 168 h under vacuum. Novozym 435 was found to be the most efficient biocatalyst for both hydroxy‐fatty acids with reaction yields of 71.7 ± 2.3 and 94.7 ± 2.4 %, respectively. Moreover, saturated estolides were also produced from a saturated 10(S)‐hydroxy‐8(E)‐octadecenoic. These estolides were chemically and enzymatically synthesized with Novozym 435, under the previous described reaction conditions with yields of 60.7 ± 2.1 and 71.2 ± 2.3 % respectively. Finally, viscosity, glass transition temperature, decomposition temperatures and enthalpies were determined to characterize both types of estolides. Thermal applications for both types of polyesters were improved since glass transition temperatures were lowered and decomposition temperatures were increased, with respect to their corresponding substrates.  相似文献   

3.
Nine new cerebrosides 1a–d , 2a , 2b , 3a–c were found in the extract of a Far‐Eastern glass sponge Aulosaccus sp. (class Hexactinellida). These β‐d ‐glucopyranosyl‐(1 → 1)‐ceramides contain sphingoid bases (2S,3S,4R,11Z)‐2‐aminoeicos‐11‐ene‐1,3,4‐triol (in 1a – d ), (2S,3S,4R,13Z)‐2‐aminoeicos‐13‐ene‐1,3,4‐triol (in 2a , b ) and (2S,3S,4R,13S*,14R*)‐2‐amino‐13,14‐methylene‐eicosane‐1,3,4‐triol (in 3a – c ), which are N‐acylated by (2R,15Z)‐2‐hydroxydocos‐15‐enoic (in 1a , 2a , 3a ), (2R,16Z)‐2‐hydroxytricos‐16‐enoic (in 1b , 2b , 3b ), (2R,17Z)‐2‐hydroxytetracos‐17‐enoic (in 1d ) and (2R)‐2‐hydroxydocosanoic (in 1c , 3c ) acids. The monoenoic and cyclopropane‐containing sphingoid bases of compounds 1a–d , 2a , 2b , 3a–c have not been found previously in any sphingolipids. The structures of the cerebrosides were elucidated on the basis of 1H‐, 13C‐NMR spectroscopy, mass spectrometry, optical rotation data and chemical transformations. A simplified method for the assignment of the absolute configuration of 2‐hydroxy fatty acids by GC analysis of their (2R)‐ and (2S)‐oct‐2‐yl esters was proposed.  相似文献   

4.
Many phospholipase Ds (PLDs) are known to catalyze transphosphatidylation as well as hydrolysis of phospholipids. Transphosphatidylation of lysoplasmalogen (LyPls)‐specific phospholipase D (LyPls‐PLD), which catalyzes hydrolysis of ether lysophospholipids such as LyPls and 1‐hexadecyl‐2‐hydroxy‐sn‐glycero‐3‐phosphocholine (Lyso‐PAF), still remains unclear. This study aims to reveal the transphosphatidylation activity of LyPls‐PLD, that is, the production of cyclic ether lysophospholipid. The enzymatic reaction is conducted in a buffer system, and the reaction products of a novel LyPls‐PLD from Thermocrispum sp. are investigated using mass spectrometry (MS). MS analyses demonstrate the reaction products to consist of 100% 1‐hexadecyl‐2‐hydroxy‐sn‐glycero‐2,3‐cyclic‐phosphate (cLyPA) and choline from Lyso‐PAF; however, 1‐alkenyl‐2‐hydroxy‐sn‐glycero‐2,3‐cyclic‐phosphate from 1‐O‐1′‐(Z)‐octadecenyl‐2‐hydroxy‐sn‐glycero‐3‐phosphocholine and 1‐O‐1′‐(Z)‐octadecenyl‐2‐hydroxy‐sn‐glycero‐3‐phosphoethanolamine is not produced. These results are expected to help in elucidating the catalytic mechanism of LyPls‐PLD, that is, the rate‐limiting step, and indicate LyPls‐PLD to be useful for the one‐pot synthesis of cLyPA. Practical Applications: A novel phospholipase D, LyPls‐PLD, can exclusively synthesize cLyPA from Lyso‐PAF using a one‐step enzymatic reaction without an organic solvent. cLyPA could be expected to show bioactivities similar to those of cyclic phosphatidic acid, which promotes normal cell differentiation, hyaluronic acid synthesis, antiproliferative activity in fibroblasts, and inhibitory activity toward cancer cell invasion and metastasis.  相似文献   

5.
The purple photosynthetic bacterium Rhodospirillum centenum has a putative type III polyketide synthase gene (rpsA). Although rpsA was known to be transcribed during the formation of dormant cells, the reaction catalyzed by RpsA was unknown. Thus we examined the RpsA reaction in vitro, using various fatty acyl‐CoAs with even numbers of carbons as starter substrates. RpsA produced tetraketide pyranones as major compounds from one C10–14 fatty acyl‐CoA unit, one malonyl‐CoA unit and two methylmalonyl‐CoA units. We identified these products as 4‐hydroxy‐3‐methyl‐6‐(1‐methyl‐2‐oxoalkyl)pyran‐2‐ones by NMR analysis. RpsA is the first bacterial type III PKS that prefers to incorporate two molecules of methylmalonyl‐CoA as the extender substrate. In addition, in vitro reactions with 13C‐labeled malonyl‐CoA revealed that RpsA produced tetraketide 6‐alkyl‐4‐hydroxy‐1,5‐dimethyl‐2‐oxocyclohexa‐3,5‐diene‐1‐carboxylic acids from C14–20 fatty acyl‐CoAs. This class of compounds is likely synthesized through aldol condensation induced by methine proton abstraction. No type III polyketide synthase that catalyzes this reaction has been reported so far. These two unusual features of RpsA extend the catalytic functions of the type III polyketide synthase family.  相似文献   

6.
BACKGROUND: Biocatalysts have gained increasing attention because of their inherent advantages over chemical catalysts. However, the poor operational stability has always prevented their broad application. In this study, (R)‐mandelic acid was chosen as a model compound of alpha‐hydroxy acids. The objective was to obtain a new biocatalyst with desired operational stability for the preparation of (R)‐mandelic acid as well as other optically pure alpha‐hydroxy acids of pharmaceutical importance. RESULTS: Using a two‐step screening strategy, Saccharomyces ellipsoideus GIM2.105 was selected as an effective biocatalyst with high enantioselectivity and remarkable operational stability. After 20 cycles of reuse, whole cells of S. ellipsoideus GIM2.105 maintained its activity, and no obvious decrease in conversion or enantiomeric excess (ee) was observed. Furthermore, effects of various reaction parameters, including pH, temperature, co‐substrate (type, concentration), substrate concentration and reaction time, on the bioreduction were studied. Under optimal conditions, (R)‐mandelic acid and four substituted aromatic (R)‐alpha‐hydroxy acids were prepared in high ee (95–>99%) and good conversion (>90%). CONCLUSION: The high enantioselectivity, remarkable operational stability and mild reaction conditions showed S. ellipsoideus GIM2.105 to be an economical biocatalyst with great industrial application potential for the production of optically active alpha‐hydroxy acids. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
The colloidal properties of emulsans formed by incubations of Acinetobacter calcoaceticus RAG‐1 on different carbon sources were studied. The apparent critical micelle concentrations (CMC) of the emulsans tested ranged from 25 to 58 mg/dm−1. Surface and interfacial tensions of the solutions showed little dependence on pH between 2 and 10. In contrast, increasing the pH from 2 to 6.5 resulted in a substantial increase in their ability to effectively emulsify aliphatic hydrocarbons. Hexadecane‐in‐water emulsions were prepared having droplet sizes between 6 and 19 µm. Many of the emulsions thus formed were found to be stable with respect to coalescence for several months. Certain structural features such as the total content of fatty acids and hydroxy fatty acids were found to have a significant effect on emulsifying activity. The maximum emulsifying activity occurred for emulsans containing about 460 nmol of total fatty acid per mg of emulsan (nmol mg−1). Emulsifying activity also showed a maximum at about 170 nmol mg−1‐emulsan of 2‐ and 3‐ hydroxy dodecanoic acids. For substituents having chain lengths ≥15 carbonatoms, the emulsifying activity on hexadecane increased with their content up to 190 nmol mg−1. On the other hand, for substituents having chain lengths of <15 carbonatoms, the emulsifying activity on hexadecane showed no obvious effect with their content up to 220 nmol mg−1. A further increase in the shorter chain length fatty acids resulted in a decrease in emulsifying activity. Hence, a substrate‐specific interaction between emulsans and the dispersed phase was observed. © 1999 Society of Chemical Industry  相似文献   

8.
The minor cerebrosides from a Far‐Eastern glass sponge Aulosaccus sp. were analyzed as constituents of some multi‐component RP‐HPLC fractions. The structures of eighteen new and one known cerebrosides were elucidated on the basis of NMR spectroscopy, mass spectrometry, optical rotation data and chemical transformations. These β‐D‐glucopyranosyl‐(1→1)‐ceramides contain sphingoid bases N‐acylated with straight‐chain (2R)‐2‐hydroxy fatty acids, namely, (2S,3S,4R,11Z)‐2‐aminoeicos‐11‐ene‐1,3,4‐triol, acylated with 15E‐22:1, 16Z‐21:1, 15Z‐21:1, 15Z‐20:1, 15E‐20:1, 19:0, 18:0 acids, (2S,3S,4R)‐2‐amino‐13‐methyltetradecane‐1,3,4‐triol—with 19Z‐26:1, 16Z‐23:1, 23:0, 22:0 acids, (2S,3S,4R)‐2‐amino‐14‐methylpentadecane‐1,3,4‐triol—with 16Z‐23:1, 16E‐23:1, 15Z‐22:1, 22:0 acids, (2S,3S,4R)‐2‐amino‐14‐methylhexadecane‐1,3,4‐triol, linked to 16Z‐23:1, 15Z‐22:1 acids, (2S,3S,4R)‐2‐amino‐9‐methylhexadecane‐1,3,4‐triol—to 16Z‐23:1 acid, and (2S,3S,4R)‐2‐aminohexadecane‐1,3,4‐triol, attached to 15Z‐22:1 acid. The 13‐methyl and 9‐methyl‐branched trihydroxy sphingoid base backbones (C15 and C17, respectively) have not been found previously in sphingolipids. The ceramide parts, containing other backbones, present new variants of N‐acylation of the marine sphingoid bases with the 2‐hydroxy fatty acids. The combination of the instrumental and chemical methods used in this study improved the efficiency of the structural analysis of such complex cerebroside mixtures that gave more detailed information on glycosphingolipid metabolism of the organism.  相似文献   

9.
In view of the increasing interest of lipid researchers in the biological effects of all‐cis Δ5‐unsaturated polymethylene‐interrupted fatty acids (Δ5‐UPIFA) from vegetable origin, this paper is concerned with their occurrence in practical sources (gymnosperm seeds), structures, and identification by gas‐liquid chromatography (GLC) and mass spectrometry (MS). The use of equivalent chain lengths (ECL) determined by calculations based on available standards, in close agreement with data determined with easily available commercial gymnosperm seeds specific for each Δ5‐UPIFA, allows identification of all Δ5‐UPIFA. These tentative identifications are supported by GLC‐MS of the appropriate (4, 4‐dimethyloxazoline and picolinyl ester) derivatives. ECL are particularly useful to identify Δ5‐UPIFA in tissue lipids from animals experimentally fed oils containing these acids, with no interference with polyunsaturated fatty acids of endogenous origin.  相似文献   

10.
BACKGROUND: Microbial transformation of steroids has attracted widespread attention, especially the transformation of those steroids synthesized with difficulty by chemical methods. In this study, microbial transformation of androst‐4‐ene‐3, 17‐dione (AD) by Bordetella sp. B4 was investigated, and the effect of temperature on transformation was studied. RESULTS: Three metabolites were purified by preparative TLC and HPLC, and identified as androsta‐1,4‐diene‐3,17‐dione (ADD), 9α‐hydroxyandrost‐4‐ene‐3, 17‐dione (9α‐OH‐AD), and 3‐hydroxy‐9, 10‐secoandrost‐1, 3, 5‐triene‐9, 17‐dione (3‐OH‐SATD) by nuclear magnetic resonance imaging (NMR), Fourier transform infrared spectroscopy (FTIR) and mass spectroscopy (MS). It was first reported that the genus of Bordetella has the capability of AD degradation. Microbial transformation of AD was performed at 30 °C, 37 °C, 40 °C and 45 °C. The 9α‐OH‐AD yield reached a maximum within 16 h when the strain was cultivated in media with AD as sole carbon at 37 °C. Surprisingly, ADD was produced by the strain cultivated at 40 °C but not at 37 °C, which was different from previous reports. It was deduced that the alcohol dehydrogenase that catalyzed the transformation of AD to ADD may be temperature sensitive. CONCLUSION: Androst‐4‐ene‐3,17‐dione was converted into 9α‐hydroxyandrost‐4‐ene‐3, 17‐dione and other metabolites rapidly by Bordetella sp. B4. It is anticipated that the strain Bordetella sp. B4 CGMCC 2229 can be used in the steroids industry. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


12.
The fatty acid compositions of flowering tops of Hypericum perforatum L. and Hypericum retusum Aucher (Guttiferae) were analyzed by gas chromatography and gas chromatography‐mass spectrometry. The major components were C16:0 (24.87%), C18:3 n‐3 (21.94%), 3‐OH‐C18:0 (18.46%) and 3‐OH‐C14:0 (14.22%) for H. perforatumL. and 3‐OH‐C14:0 (28.29%), C18:0 (16.47%) and C16:0 (14.17%) for H. retusum Aucher. Besides widespread plant fatty acids, 3‐hydroxy fatty acids, namely 3‐hydroxytetradecanoic acid (3‐OH‐C14:0) and 3‐hydroxyoctadecanoic acid (3‐OH‐C18:0) were also obtained.  相似文献   

13.
The literature on non‐esterified fatty acid (NEFA) concentrations in blood cell membranes from patients with multiple sclerosis (MS) is scarce and reports on concentrations in brain tissue from these patients are inconsistent. NEFAs are needed for several biological functions, for example, as precursors for inflammatory eicosanoid synthesis. The objective of this study was therefore to compare NEFA concentrations in blood cell membranes from patients with that of healthy control subjects, and to correlate possible changes with disease outcome. NEFA C18:2n‐6 (9,12‐octadecadienoic acid) was decreased in peripheral blood mononuclear cell membranes from patients, median (quartile range): patients: 0.05 (0.02) and controls: 0.07 (0.14) µg/mg protein, p = 0.007. C18:2n‐6 also showed a weaker relationship with other fatty acids: with C16:0: patients: R = 0.40, p = 0.04; controls: R = 0.82, p = 0.000001. Saturated and MUFA showed positive correlations with the Bowel and bladder Functional System Scores (FSS). In contrast, in red blood cell membranes C18:2n‐6 and C22:0 (docosanoic acid) showed inverse correlations with the Sensory and Brainstem FSS. The decrease in NEFA C18:2n‐6 resulted in metabolic abnormalities between itself and saturated and monounsaturated NEFAs. Altered fatty acid composition in immune cell membranes would influence immune cell functions, and could possibly have contributed to the positive correlations between these fatty acids and disease outcome. Practical applications: Multiple sclerosis (MS) is a disease which presents with inflammation of the central nervous system. The cause of the disease is unknown and treatments such as anti‐inflammatory, immunosuppressive medications, and fatty acids supplements are for the alleviation of symptoms only. The results from this study however, showed an altered relationship between polyunsaturated and saturated as well as monounsaturated non‐esterified fatty acids in immune cells, which could have contributed to the inflammatory/infectious condition in these patients. The results from this study and further studies could possibly result in formulation of fatty acid supplements at correct doses or ratios for MS patients.  相似文献   

14.
BACKGROUND: Arthrobacter simplex cells immobilised in sodium cellulose sulfate/poly‐dimethyl‐diallyl‐ammonium chloride microcapsules were used for the microbial dehydrogenation of 11α‐hydroxy‐16α,17‐epoxyprogesterone to 11α‐hydroxy‐16α,17α‐epoxypregn‐1,4‐diene‐3,20‐dione in an aqueous/organic solvent two‐liquid‐phase system, which is a key reaction in the production of glucocorticoid pharmaceuticals. The aim of the study was to establish a suitable aqueous/organic solvent two‐liquid‐phase system for performing semi‐continuous production in an airlift loop reactor by encapsulated A. simplex cells with the addition of suitable surfactants to achieve a higher yield of the product. RESULTS: n‐Hexane was selected as the most suitable organic solvent. In optimised Tween‐80 emulsion feed mode the conversion in the airlift loop reactor was as high as 97.54% when the time of reaction was 2 h, and the reaction time was greatly shortened. In semi‐continuous production the cultivation with immobilised cells was carried out for five batches in total. The conversion in each batch was above 95% and the enzymatic activity still remained quite high after five batches of biotransformation. CONCLUSION: The results showed that performing the conversion by this method shortened the reaction time and increased the productivity, thus demonstrating the great potential of the method for the dehydrogenation of 11α‐hydroxy‐16α,17‐epoxyprogesterone. Copyright © 2008 Society of Chemical Industry  相似文献   

15.
16.
The formation of cis‐9,10‐epoxystearate, trans‐9,10‐epoxystearate, cis‐9,10‐epoxyoleate, cis‐12,13‐epoxyoleate, trans‐9,10‐epoxyoleate, trans‐12,13‐epoxyoleate and the co‐eluting 9‐ and 10‐ketostearates during eight successive pan‐ and deep‐frying sessions of pre‐fried potatoes in five different types of vegetable oils – namely cottonseed oil, sunflower oil, vegetable shortening, palm oil and virgin olive oil – was followed and quantified both in fried oils and in fried potatoes by GC/MS after derivatization to methyl esters. These oxidized fatty acids were present at relatively low concentrations in the fresh oils and pre‐fried potatoes while they increased linearly with frying time, reaching up to 1140.8 µg/g in virgin olive oil (VOO) and 186.9 µg/g in potatoes pan‐fried in VOO after eight pan‐frying sessions, with trans‐9,10‐epoxystearate predominating in all cases. The formation of polymerized triacylglycerols (PTG) was also quantified in frying oils by size exclusion HPLC. Pan‐frying caused higher oxidized fatty acid and PTG formation compared to deep‐frying. Epoxyoleates and PTG concentrations were increased after frying in polyunsaturated oils, while epoxystearate and 9‐ and 10‐ketostearate concentrations were increased after frying in monounsaturated oils. No specific absorption of the oxidized fatty acids by the fried potatoes seems to occur. The dietary intake of oxidized fatty acids and PTG by the consumption of fried potatoes was discussed.  相似文献   

17.
Triterpenes of betulinic acid type exhibit many interesting biological activities. Therefore a series of new 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid derivatives 2a—22 with putative pharmacological activities were synthesized. As starting compounds 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid ( 1a ), isolated from Schefflera octophylla, or its 3‐O‐acetyl derivative 1b were used. Mono‐ and diesters ( 2a—b from 1a , and 4d from 4c ) were prepared with CH2N2. Oxidation of the isopropenyl side chain with OsO4 yielded the 20,29‐diols ( 4a—b from 1b , and 19 from 17 ), which were in the case of 4b further transformed to the 29‐norketones 8a/mdash;b . Oxidation of the isopropenyl side chain with m‐chloroperbenzoic acid afforded the 20,29‐epoxide 12 (from 1b ) and the 29‐aldehydes and a‐hydroxy aldehydes ( 13a—c from 2a, 14a—c from 2b , and 16a—c from 15a ). Ring A was modified by a tosylation—elimination sequence using p‐TsCl/NaOAc, which afforded diolefin 15a (from 2a ) with Δ2,20(29) double bonds or 23‐nor‐Δ3,20(29)diolefin 17 (from 1a ). Compounds 4b, 4c , and 8a were coupled with L ‐methionin, L ‐phenylalanin, L ‐alanin, L ‐serin, and L ‐glutaminic acid via amide bonds at positions 23 and 28 to afford the amino acid conjugates 5a—7b and 9a—11 .  相似文献   

18.
2‐Hydroxy fatty acids can be found in several different organisms, including bacteria. In this study, we have studied the biosynthesis of 2‐hydroxy fatty acids in the myxobacteria Myxococcus xanthus and Stigmatella aurantiaca, resulting in the identification of a family of stereospecific fatty acid α‐hydroxylases. Although the stereospecificities of the hydroxylases differ between these two species, they share a common function in supporting fatty acid α‐oxidation; that is, the oxidative shortening of fatty acids. Whereas in S. aurantiaca this process takes place during normal vegetative growth, in M. xanthus it takes place only under developmental conditions. We were also able to identify serine palmitoyltransferase encoding genes involved in sphingolipid biosynthesis as well as sphingolipids themselves in both types of myxobacteria, and were able to show that the α‐hydroxylation reaction is in fact dependent on the presence of fatty acids bound to sphingolipids.  相似文献   

19.
The liver oil of deep‐sea dogfish, Centrophorus squamosus, was extracted by different physical methods and refined by sequential processes of degumming, neutralization, decolorization, and deodorization. Phosphoric acid effectively eliminated the mucilaginous substances in crude oil to result in triglycerides with permissible contents of peroxides, unesterified fatty acids, volatile compounds, thiobarbituric acid reactive species, and total oxidation values. A synergistic combination of activated charcoal and Fuller's earth could effectively bleach the crude deep‐sea dogfish liver oil (CDLO) for greater clarity and acceptable color characteristics. The adverse odors in the crude oil were eliminated by acetic acid treatment and vacuum deodorization. This study shows that the multistep refining process of CDLO significantly enhances the composition of C20–22 n‐3 polyunsaturated fatty acids, with the removal of the components responsible for the undesirable physicochemical characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号