首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide probes covalently linked to fabricated MNPs and Raman reporter tag-conjugated gold nanoparticles (GNPs) and the subsequent removal of GNP-WNV target sequence-MNP hybridization complexes from solution by an externally applied magnetic source. Laser excitation of the pelleted material provided a signature SERS spectrum which is diagnostic for the reporter, 5,5'-dithiobis(succinimidy-2-nitrobenzoate) (DSNB), and restricted to hybridization reactions containing WNV target sequences. Hybridizations containing dilutions of the target oligonucleotide were characterized by a reduction in the intensification of the spectral peaks accorded to the SERS signaling of DSNB, and the limit of detection for target sequence in buffer was 10 pM. Due to the short hybridization times required to conduct the assay and ease with which reproducible Raman spectra can be acquired, the assay is amenable to adaptation within a portable, user-friendly Raman detection platform for nucleic acids.  相似文献   

2.
Surface-enhanced Raman scattering (SERS) is proven to be a powerful technique for rapid identification and discrimination of microorganisms. However, due to the heterogeneous nature of the samples, the acquisition of reproducible spectra hinders the further development of the technique. In this study, we demonstrate the influence of the experimental conditions on SERS spectra. Then, we report a simple sample preparation method coupled with a light microscope attached to a Raman spectrometer to find a proper spot on the sample to acquire reproducible SERS spectra. This method utilizes the excited surface plasmons of the aggregated silver nanoparticles to visualize the spots on the sample. The samples are prepared using the concentrated silver colloidal solutions. The collection time for one spectrum is 10 s and each spectrum is a very good representative of the other spectra acquired from the same sample. The nature of the surface charge of the silver nanoparticles influences the spectral features by determining the strength of the interactions between nanoparticles and bacteria and the aggregation properties of the nanoparticles. Although increasing the colloid concentration in the sample resulted in reproducible spectra from arbitrary points on the sample, a great variation from sample to sample prepared with the different colloidal solution concentrations is observed.  相似文献   

3.
Psychro-active bacteria, important constituents of polar ecosystems, have a unique ability to remain active at temperatures below 0 degrees C, yet it is not known to what extent the composition of their outer cell surfaces aids in their low-temperature viability. In this study, aqueous suspensions of five strains of Arctic psychro-active marine bacteria (PAMB) (mostly sea-ice isolates), were characterized by surface-enhanced Raman spectroscopy (SERS) and compared with SERS spectra from E. coli and P. aerigunosa. We find the SERS spectra of the five psychro-active bacterial strains are similar within experimental reproducibility. However, these spectra are significantly different from the spectra of P. aeruginosa and E. coli. We find that the relative intensities of many of the common peaks show the largest differences reported so far for bacterial samples. An indication of a peak was found in the PAMB spectra that has been identified as characteristic of unsaturated fatty acids and suggests that the outer membranes of the PAMB may contain unsaturated fatty acids. We find that using suspensions of silver colloid particles greatly intensifies the Raman peaks and quenches the fluorescence from bacterial samples. This technique is useful for examination of specific biochemical differences among bacteria.  相似文献   

4.
Biofilms represent the predominant form of microbial life on Earth. They are aggregates of microorganisms embedded in a matrix formed by extracellular polymeric substances (EPS). Detailed information about chemical composition and structure of the EPS matrix is relevant e.g. for the optimization of biocides, of antifouling strategies and for biological wastewater treatment. Raman microscopy (RM) is a capable tool that can provide detailed chemical information about biofilm constituents with spatial resolution of optical microscope. However, the sensitivity of RM is limited. Surface-enhanced Raman scattering (SERS), which enables investigations of biomolecules at very low concentration levels, allows overcoming this drawback. To our knowledge, this paper is the first report on reproducible SERS spectra from different constituents of a multispecies biofilm. We believe that the reproducibility is partly owed to the in situ measurement of the biofilm, while up to now SERS measurements of microbiological samples by RM were carried out after sample drying. We employed colloidal silver nanoparticles for in situ SERS measurements by RM. The achieved enhancement factor of up to 2 orders of magnitude illustrates a high potential of SERS for ultrasensitive chemical analysis of biofilms, including the detection of different components and the determination of their relative abundance in the complex biofilm matrix.  相似文献   

5.
We apply in situ surface-enhanced Raman spectroscopy (SERS) to probe the reversible photoswitching of azobenzene-functionalized molecules inserted in self-assembled monolayers that serve as controlled nanoscale environments. Nanohole arrays are fabricated in Au thin films to enable SERS measurements associated with excitation of surface plasmons. A series of SERS spectra are recorded for azobenzene upon cycling exposure to UV (365 nm) and blue (450 nm) light. Experimental spectra match theoretical calculations. On the basis of both the simulations and the experimental data analysis, SERS provides quantitative information on the reversible photoswitching of azobenzene in controlled nanoscale environments.  相似文献   

6.
Surface-enhanced Raman scattering (SERS) utilizing colloidal silver has already been shown to provide a rapid means of generating "whole-organism fingerprints" for use in bacterial identification and discrimination. However, one of the main drawbacks of the technique for the analysis of microbiological samples with optical Raman microspectroscopy has been the inability to acquire pre-emptively a region of the sample matrix where both the SERS substrate and biomass are both present. In this study, we introduce a Raman interface for scanning electron microscopy (SEM) and demonstrate the application of this technology to the reproducible and targeted collection of bacterial SERS spectra. In secondary electron mode, the SEM images clearly reveal regions of the sample matrix where the sodium borohydride-reduced silver colloidal particles are present, Stokes spectra collected from these regions are rich in vibrational bands, whereas spectra taken from other areas of the sample elicit a strong fluorescence response. Replicate SERS spectra were collected from two bacterial strains and show excellent reproducibility both by visual inspection and as demonstrated by principal components analysis on the whole SERS spectra.  相似文献   

7.
It has been recently suggested [N. E. Marotta and L. A. Bottomley, Appl. Spectrosc. 64, 601-606 (2010)] that previously reported surface-enhanced Raman scattering (SERS) spectra of vegetative bacterial cells are due to residual cell growth media that were not properly removed from samples of the lab-cultured microorganism suspensions. SERS spectra of several commonly used cell growth media are similar to those of bacterial cells, as shown here and reported elsewhere. However, a multivariate data analysis approach shows that SERS spectra of different bacterial species grown in the same growth media exhibit different characteristic vibrational spectra, SERS spectra of the same organism grown in different media display the same SERS spectrum, and SERS spectra of growth media do not cluster near the SERS spectra of washed bacteria. Furthermore, a bacterial SERS spectrum grown in a minimal medium, which uses inorganics for a nitrogen source and displays virtually no SERS features, exhibits a characteristic bacterial SERS spectrum. We use multivariate analysis to show how successive water washing and centrifugation cycles remove cell growth media and result in a robust bacterial SERS spectrum in contrast to the previous study attributing bacterial SERS signals to growth media.  相似文献   

8.
In this paper we highlight the accurate spectral detection of bovine serum albumin and ribonuclease-A using a surface-enhanced Raman scattering (SERS) substrate based on gold nanocylinders obtained by electron-beam lithography (EBL). The nanocylinders have diameters from 100 to 180 nm with a gap of 200 nm. We demonstrate that optimizing the size and the shape of the lithographed gold nanocylinders, we can obtain SERS spectra of proteins at low concentration. This SERS study enabled us to estimate high enhancement factors (10(5) for BSA and 10(7) for RNase-A) of important bands in the protein Raman spectrum measured for 1 mM concentration. We demonstrate that, to reach the highest enhancement, it is necessary to optimize the SERS signal and that the main parameter of optimization is the LSPR position. The LSPR have to be suitably located between the laser excitation wavelength, which is 632.8 nm, and the position of the considered Raman band. Our study underlines the efficiency of gold nanocylinder arrays in the spectral detection of proteins.  相似文献   

9.
Surface-enhanced Raman spectroscopy (SERS) was used to detect and characterize polyatomic cations and molecules that were electrosprayed into the gas phase and soft-landed in vacuum on plasma-treated silver substrates. Organic dyes such as crystal violet and Rhodamine B, the nucleobase cytosine, and nucleosides cytidine and 2'-deoxycytidine were immobilized by soft landing on plasma-treated metal surfaces at kinetic energies ranging from near thermal to 200 eV. While enhancing Raman scattering 10(5)-10(6)-fold, the metal surface effectively quenches the fluorescence that does not interfere with the Raman spectra. SERS spectra from submonolayer amounts of soft-landed compounds were sufficiently intense and reproducible to allow identification of Raman active vibrational modes for structure assignment. Soft-landed species appear to be microsolvated on the surface and bound via ion pairing or pi-complexation to the Ag atoms and ions in the surface oxide layer. Comparison of spectra from soft-landed and solution samples indicates that the molecules survive soft landing without significant chemical damage even when they strike the surface at hyperthermal collision energies.  相似文献   

10.
Broadband coherent anti-Stokes Raman spectroscopy (CARS) is demonstrated as an effective probe of polymer thin film materials. A simple modification to a 1 kHz broad bandwidth sum frequency generation (SFG) spectrometer permits acquisition of CARS spectra for polymer thin films less than 100 nm thick, a dimension relevant to organic electronic device applications. CARS spectra are compared to the conventional Raman spectra of polystyrene and the resonance-enhanced Raman spectra of poly(3-hexylthiophene). The CARS spectra obtained under these conditions consistently demonstrate enhanced signal-to-noise ratio compared to the spontaneous Raman scattering. The sensitivity of the CARS measurement is limited by the damage threshold of the samples. The dielectic properties of the substrate have a dramatic effect on the detected signal intensity. For ultrathin films, the strongest signals are obtained from fused silica surfaces. Similar to surface-enhanced Raman scattering (SERS), Au also gives a large signal, but contrary to SERS, no surface roughening is necessary.  相似文献   

11.
We have got large area surface-enhanced Raman scattering (SERS) substrates with uniform high enhancement factors by the so-called moulage method for the first time. A silver film (99.99%) with several millimeters thickness was thermally evaporated on the porous anodic alumina templates and the SERS substrate was got after moving off the templates. Surface-enhanced Raman scattering spectra of pyridine (0.01 Mol/L) were measured under 632.8 nm excitation. The experimental enhancement factors were more than 10(5) and S/N(p-p) around 100 was obtained. We have compared the SERS spectra of pyridine collected from different locations on the same SERS substrate and different substrates, which illustrate the well uniform enhance properties and the reproducibility of this method, respectively. The comparison of the SERS spectra, obtained from the SERS substrates and Ag film evaporated directly on glass slide, have proved that the electromagnetic coupling between two adjacent nanoparticles was important to the SERS effect. We also used rhodamine 6G as the probe molecules and found that the different molecules were very sensitive to the morphology of the SERS substrates.  相似文献   

12.
Baoliang Sun 《Materials Letters》2009,63(29):2570-2573
Ordered Ag nanowire arrays with high aspect ratio and high density self-supporting Ag nanowire patterns were successfully prepared using potentiostatic electrodeposition within the confined nanochannels of a commercial porous anodic aluminium oxide (AAO) template. X-ray diffraction and selected area electron diffraction analysis show that the as-synthesized samples have preferred (220) orientation. Transmission electron microscopy and scanning electron microscopy investigation reveal that large-area and ordered Ag nanowire arrays with smooth surface and uniform diameter were synthesized. Surface-enhanced Raman Scattering (SERS) spectra show that the Ag nanowire arrays as substrates have high SERS activity.  相似文献   

13.
Surface-enhanced Raman spectra (SERS) of molecules separated by gas chromatography (GC) were measured off-line by condensing the analyte on a moving, liquid-nitrogen-cooled ZnSe window on which a 5 nm layer of silver had been formed by physical vapor deposition. After the components that eluted from the chromatograph had been deposited, the substrate was allowed to warm up to room temperature and transferred to the focus of a Raman microspectrometer where the spectrum of each component was measured. Band intensities in the spectrum of 3 ng of caffeine prepared in this way were approximately the same as in the spectrum of bulk caffeine. By making some logical assumptions, it was shown that identifiable GC/SERS spectra of 30 pg of many molecules could be measured over a 300 cm(-1) region in real-time and that if an optimized substrate were used the minimum identifiable quantity could be reduced to 1 pg or less.  相似文献   

14.
Autoinducer (AI) molecules are used by quorum sensing (QS) bacteria to communicate information about their environment and are critical to their ability to coordinate certain physiological activities. Studying how these organisms react to environmental stresses could provide insight into methods to control these activities. To this end, we are investigating spectroscopic methods of analysis that allow in situ measurements of these AI molecules under different environmental conditions. We found that for one class of AIs, N-acyl-homoserine lactones (AHLs), surface-enhanced Raman spectroscopy (SERS) is a method capable of performing such measurements in situ. SERS spectra of seven different AHLs with acyl chain lengths from 4 to 12 carbons were collected for the first time using Ag colloidal nanoparticles synthesized via both citrate and borohydride reduction methods. Strong SERS spectra were obtained in as little as 10 seconds for 80 microM solutions of AI that exhibited the strongest SERS response, whereas 20 seconds was typical for most AI SERS spectra collected during this study. Although all spectra were similar, significant differences were detected in the SERS spectra of C4-AHL and 3-oxo-C6-AHL and more subtle differences were noted between all AHLs. Initial results indicate a detection limit of approximately 10(-6)M for C6-AHL, which is within the limits of biologically relevant concentrations of AI molecules (nM-microM). Based on these results, the SERS method shows promise for monitoring AI molecule concentrations in situ, within biofilms containing QS bacteria. This new capability offers the possibility to "listen in" on chemical communications between bacteria in their natural environment as that environment is stressed.  相似文献   

15.
A spectroscopic assay based on surface enhanced Raman scattering (SERS) using silver nanorod array substrates has been developed that allows for rapid detection of trace levels of viruses with a high degree of sensitivity and specificity. This novel SERS assay can detect spectral differences between viruses, viral strains, and viruses with gene deletions in biological media. The method provides rapid diagnostics for detection and characterization of viruses generating reproducible spectra without viral manipulation.  相似文献   

16.
While surface-enhanced Raman scattering (SERS) can increase the Raman cross-section by 4-6 orders of magnitude, for SERS to be effective it is necessary for the analyte to be either chemically bonded or within close proximity to the metal surface used. Therefore most studies investigating the biochemical constituents of microorganisms have introduced an external supply of gold or silver nanoparticles. As a consequence, the study of bacteria by SERS has to date been focused almost exclusively on the extracellular analysis of the Gram-negative outer cell membrane. Bacterial cells typically measure as little as 0.5 by 1 mum, and it is difficult to introduce a nanometer sized colloidal metal particle into this tiny environment. However, dissimilatory metal-reducing bacteria, including Shewanella and Geobacter species, can reduce a wide range of high valence metal ions, often within the cell, and for Ag(I) and Au(III) this can result in the formation of colloidal zero-valent particles. Here we report, for the first time, SERS of the bacterium Geobacter sulfurreducens facilitated by colloidal gold particles precipitated within the cell. In addition, we show SERS from the same organism following reduction of ionic silver, which results in colloidal silver depositions on the cell surface.  相似文献   

17.
Very small (<10 nm) monodisperse gold nanoparticles (AuNPs) coated with a monolayer of decanethiol were prepared and their surface-enhanced infrared absorption (SEIRA) spectra were measured in the transmission mode. The AuNPs were prepared by the borohydride reduction of HAuCl(4) inside reverse micelles that were made by adding water to a hexane solution of sodium bis(2-ethylhexyl)sulfosuccinate (AOT). The gold nanoparticles were then stabilized by the addition of decanethiol. Subsequent addition of p-nitrothiophenol both facilitated the removal of excess AOT and showed that the gold surface was completely covered by the decanethiol. SEIRA spectra of decanethiol on gold particles prepared in AOT microemulsions were about twelve times more intense than corresponding layers on gold produced by electroless deposition and gave a significantly less noisy spectrum compared to the corresponding surface-enhanced Raman spectrum. The surface-enhanced Raman scattering (SERS) spectra of the same samples showed that the most intense spectrum was obtained from gold nanoparticles with a mean diameter of 2.5 nm. This result is in contrast to previous statements that SERS spectra could only be obtained from particles larger than 10 nm.  相似文献   

18.
A novel surface-enhanced Raman scattering (SERS) based approach for the quantitative determination of creatinine in human serum is described. Using isotopically labeled (2-13C, 2,3-15N2) creatinine as internal standard, SERS acquires the character of a ratio method that works similar to the well-established isotope dilution techniques. In conjunction with multivariate data analysis, the method was successfully applied for quantifying creatinine at clinically relevant levels and below. A partial least-squares regression model was generated from a set of 87 calibration spectra covering the full range of mole fractions of neat creatinine. The prediction performance of the model was thereafter validated with independent reference samples giving a standard deviation of less than 2%. Finally, a conditioning procedure to prepare real serum samples for SERS-based creatinine analysis was worked out and validated. Measured serum creatinine concentrations are within 3% of the values obtained from gas chromatography/isotope dilution mass spectrometry on the same serum starting material.  相似文献   

19.
Raman spectroscopy has recently been shown to be a potentially powerful whole-organism fingerprinting technique and is attracting interest within microbial systematics for the rapid identification of bacteria and fungi. However, while the Raman effect is so weak that only approximately 1 in 10(8) incident photons are Raman scattered (so that collection times are in the order of minutes), it can be greatly enhanced (by some 10(3)-10(6)-fold) if the molecules are attached to, or microscopically close to, a suitably roughened surface, a technique known as surface-enhanced Raman scattering (SERS). In this study, SERS, employing an aggregated silver colloid substrate, was used to analyze a collection of clinical bacterial isolates associated with urinary tract infections. While each spectrum took 10 s to collect, to acquire reproducible data, 50 spectra were collected making the spectral acquisition times per bacterium approximately 8 min. The multivariate statistical techniques of discriminant function analysis (DFA) and hierarchical cluster analysis (HCA) were applied in order to group these organisms based on their spectral fingerprints. The resultant ordination plots and dendrograms showed correct groupings for these organisms, including discrimination to strain level for a sample group of Escherichia coli, which was validated by projection of test spectra into DFA and HCA space. We believe this to be the first report showing bacterial discrimination using SERS.  相似文献   

20.
A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) surface-enhanced Raman scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on approximately 60-nm-diameter gold colloids bound to 3-aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap and manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveals not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号