首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 54 毫秒
1.
针对当前统计模型及其自适应算法对弱机动目标跟踪精度较低以及强机动发生时刻跟踪误差增大的缺陷,提出了一种修正的当前统计模型及自适应跟踪算法。一方面,利用指数函数对当前统计模型中加速度极值进行实时修正,从而提高了算法对弱机动目标的跟踪精度;另一方面,利用滤波残差调整预测协方差,同时对滤波结果发生较大偏差的上一时刻的滤波结果进行修正,从而提高了对强机动目标的适应能力。仿真结果表明,所提算法对弱机动目标和强机动目标都具有良好的跟踪性能。  相似文献   

2.
改进的当前统计模型及自适应跟踪算法   总被引:2,自引:1,他引:2  
对于机动目标跟踪问题,在当前统计(CS)模型的基础上,提出了一种新的机动目标自适应跟踪算法。通过引入强跟踪滤波器(STF)的渐消因子,增强了模型对目标突发机动的自适应跟踪能力,同时针对模型对目标加速度极限值的依赖性这一缺点,引入一种利用位置估计值与加速度的函数关系自适应调整加速度方差的方法,提高了对弱机动和非机动目标的跟踪能力。仿真结果表明,该算法与标准的当前统计模型滤波算法相比具有较高的跟踪精度。  相似文献   

3.
一种基于"当前"统计模型的自适应滤波算法   总被引:3,自引:1,他引:3  
针对机动目标跟踪问题 ,在“当前”统计模型的基础上 ,利用机动加速度与方差的自适应关系 ,提出了一种新的自适应滤波算法。大量仿真结果表明 ,该算法在跟踪机动目标时 ,具有良好的跟踪性能。  相似文献   

4.
针对"当前"统计模型中目标机动频率和极限加速度值人为设定的不合理性,提出一种基于修正模型的模糊自适应算法(CS-MFA),对机动频率建模以便其估计更新,同时利用目标机动信息来实时调整过程噪声方差,提高系统在目标作非机动或者弱机动时的跟踪精度以及在强机动时的快速响应能力.最后,通过仿真验证了该算法的有效性.  相似文献   

5.
机动目标跟踪广泛应用于军事和民用领域。机动目标跟踪的主要问题之一是建立未知的目标加速度模型。本文阐述了一种跟踪机动目标的机动加速度统计模型--“当前”统计模型,并推导了基于此模型的自适应Kalman跟踪算法。这种模型和算法适用于每一种具体的战术场合和目标机动的当前状况。能够正确直接地估计出机动目标的当前状态,不存在任何估计滞后与修正问题。  相似文献   

6.
基于STF的"当前"统计模型及自适应跟踪算法   总被引:16,自引:1,他引:16  
范小军  刘锋  秦勇  张军 《电子学报》2006,34(6):981-984
在"当前"统计模型(CS)的基础上,提出了一种新的机动目标自适应跟踪算法STF-CS.该算法通过引入强跟踪滤波器(STF)的渐消因子,实时调节滤波器增益,增强了系统对突发机动的自适应跟踪能力,同时保留了"当前"统计模型跟踪算法对一般机动目标跟踪精度高的特点.仿真结果表明,在跟踪一般机动目标时,其误差和"当前"统计模型算法相当;在跟踪突发机动目标时,本文算法的误差明显小于"当前"统计模型及自适应算法.  相似文献   

7.
针对密集杂波环境下传统概率数据关联算法对突发机动目标跟踪性能下降问题,提出了一种基于采用渐消因子的改进当前统计模型的自适应概率数据关联算法。该算法改进了传统的当前统计模型中加速度方差的计算方式,并在滤波算法中采用了渐消因子,克服了传统卡尔曼滤波的3大缺陷,通过改变预测协方差来修正滤波增益,在保持跟踪精度的前提下,能自适应调整滤波器带宽,增强了系统对突发机动的跟踪能力。理论分析和仿真结果表明,该算法比采用强跟踪滤波器的概率数据关联算法更有效。  相似文献   

8.
自适应交互多模型跟踪算法的模型集设计   总被引:5,自引:0,他引:5  
自适应交互多模型算法(AIMM)是标准交互多模型算法(IMM)的一种改进。但AIMM遇到了新的问题,包括如何选择自适应模型集的结构,如何从基于旧模型集的滤波器中继承各种数据。本文分析了这些问题,并给出了AIMM中模型集和模型转移概率的设计方法。仿真结果表明,改进的AIMM算法比普通的AIMM算法的跟踪性能有明显的提高。  相似文献   

9.
提出一种基于改进"当前"统计模型的目标自适应跟踪算法.针对"当前"统计模型自适应算法对机动加速度极限值有依赖,对弱机动目标跟踪精度不高的问题,采用一种简单的加速度方差自适应调整公式加以克服,在此基础上融合隶属函数对其进行加权改进.为克服算法中自相关时间常数难以选取问题,将不同自相关时间常数的"当前"统计模型在交互式多模型框架内进行交互.仿真结果表明,无论对于强机动目标还是弱机动目标,新算法都具有较好的跟踪效果.  相似文献   

10.
机动目标自适应高斯模型与跟踪算法   总被引:4,自引:0,他引:4  
党建武  黄建国 《电讯技术》2003,43(2):109-113,119
提出了一种描述机动目标运动状态的自适应高斯模型,在这种模型中,机动目标的加速度被认为是具有非零均值、时间相关的随机过程,并假定其概率密度函数服从高斯分布。指出了机动目标运动模型的均值和方差与目标机动加速度最佳当前估计值之间的关系,在此基础上,提出了相应的自适应卡尔曼滤波算法。仿真结果表明,该算法对机动目标在不同机动方式下的位置、速度和加速度均有良好的跟踪效果,且所需计算量小。  相似文献   

11.
引入输入估计的交互式多模跟踪算法   总被引:2,自引:0,他引:2       下载免费PDF全文
盛琥  杨景曙  曾芳玲  张帆 《电子学报》2009,37(12):2810-2814
 本文融合交互多模算法和修正输入估计算法,提出一种新的全面自适应跟踪算法.利用修正新息序列的方法对输入估计(IE:Input Estimation)算法进行了改进,提高了输入估计的性能.综合不同检测窗长度的修正输入估计(MIE:Modified IE)算法的特点,在交互式多模型中采用不同检测窗长度的MIE作为子滤波器,保持对机动的全面自适应跟踪.仿真实验证明,改进算法与CV-CA模型组成的交互多模算法相比,无论对机动的响应速度还是滤波精度都优于交互多模算法.  相似文献   

12.
杨伟  杨华  柴奇  王黎明 《红外技术》2008,30(7):384-386
针对目标跟踪过程中目标尺度伸缩和姿态形状的变化引起的目标丢失,以及使用单个模型跟踪机动目标不够理想,提出一种基于SIFT特征的自适应滤波目标跟踪算法.仿真结果表明,该算法在目标机动时,跟踪性能远优于其它特征匹配算法和多模型算法,而且计算量小,能保证跟踪的实时性.  相似文献   

13.
噪声统计自适应估计的改进   总被引:2,自引:0,他引:2  
通过研究噪声统计特性,提出对噪声统计特性自适应估计的改进方法,通过仿真,该方法能够适应不同的机动目标,并能够提高处理增益,满足适时性要求。  相似文献   

14.
自适应网格交互式多模型算法(AGIMM)单纯依靠目标的模型后验概率来调整模型集,因此造成了在目标机动时刻跟踪性能不高的问题。基于图像传感器对目标机动的快速检测性能,首次将图像中的目标姿态角信息引入到该算法中。通过建立AGIMM估计的模型角速度与姿态角蕴含的模型角速度之间的隶属度关系,修正了目标的模型后验概率,增强了模型辨识能力,提高了该算法在目标机动时刻的跟踪性能,从而实现了图像传感器与雷达传感器两种异类信息的有效融合。  相似文献   

15.
自适应转弯模型的机动目标跟踪算法   总被引:5,自引:3,他引:5  
赵艳丽  刘剑  罗鹏飞 《现代雷达》2003,25(11):14-16
给出了一种利用白适应转弯速率模型的IMM跟踪算法,可以用于机动目标的跟踪中。每一步通过交互输出的速度和加速度的估计值来计算转弯速率,它的大小等于加速度和速度的比值。本文中对提出的白适应算法和其他两种IMM算法进行了比较。  相似文献   

16.
自适应转移概率交互式多模型跟踪算法   总被引:4,自引:0,他引:4       下载免费PDF全文
许登荣  程水英  包守亮 《电子学报》2017,45(9):2113-2120
针对标准的交互式多模型算法(Interacting Multiple Model,IMM)存在模型集设计困难和采用固定转移概率矩阵导致模型切换缓慢、跟踪精度下降的不足,提出一种自适应转移概率IMM算法.首先,提出了一种新的模型集设计方法,将强跟踪修正输入估计(Strong Tracking Modified Input Estimation,STMIE)模型和匀速运动(Constant Velocity,CV)模型作为IMM算法的模型集,利用STMIE算法对高机动目标的跟踪能力以及CV模型对非机动目标跟踪的高精度,实现对目标的全面自适应跟踪.其次,提出一种依据模型似然函数值对Markov转移概率进行实时修正的方法,增强匹配模型的作用,削弱不匹配模型的影响.仿真结果表明,依据模型似然函数修正转移概率的方法使IMM算法的模型切换速度和跟踪精度都得到提高,提出的IMM-STMIECV算法的跟踪精度高于IMM-CVCA、IMM-CVCACT以及IMM-CVCS算法.  相似文献   

17.
张俊根 《电讯技术》2024,64(4):591-597
针对现有交互多模型箱粒子滤波(Interacting Multiple Model Box Particle Filter,IMMBPF)算法在区间量测目标跟踪过程中模型切换和跟踪精度方面的不足,结合自适应交互多模型算法,提出了一种自适应交互多模型箱粒子滤波(Adaptive IMMBPF,AIMMBPF)算法。该算法利用模型似然后验信息构建修正因子,并结合阈值对马尔可夫转移概率矩阵进行自适应修正,使得匹配模型的概率快速增大,并且可以减小非匹配模型的影响,即使在目标运动模型先验信息不足或者不准确情况下,也能对模型转移概率进行自适应更新。对于量测常受到未知分布和偏差的区间误差所影响而呈现区间形式的问题,将箱粒子代替普通粒子,拟合后验概率密度从而进行滤波。仿真结果表明,相比于原有算法,该算法在区间量测机动目标跟踪的应用中,拥有更优的模型匹配度和目标跟踪精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号