首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
针对当前统计模型及其自适应算法对弱机动目标跟踪精度较低以及强机动发生时刻跟踪误差增大的缺陷,提出了一种修正的当前统计模型及自适应跟踪算法。一方面,利用指数函数对当前统计模型中加速度极值进行实时修正,从而提高了算法对弱机动目标的跟踪精度;另一方面,利用滤波残差调整预测协方差,同时对滤波结果发生较大偏差的上一时刻的滤波结果进行修正,从而提高了对强机动目标的适应能力。仿真结果表明,所提算法对弱机动目标和强机动目标都具有良好的跟踪性能。  相似文献   

2.
改进的当前统计模型及自适应跟踪算法   总被引:3,自引:1,他引:2  
对于机动目标跟踪问题,在当前统计(CS)模型的基础上,提出了一种新的机动目标自适应跟踪算法。通过引入强跟踪滤波器(STF)的渐消因子,增强了模型对目标突发机动的自适应跟踪能力,同时针对模型对目标加速度极限值的依赖性这一缺点,引入一种利用位置估计值与加速度的函数关系自适应调整加速度方差的方法,提高了对弱机动和非机动目标的跟踪能力。仿真结果表明,该算法与标准的当前统计模型滤波算法相比具有较高的跟踪精度。  相似文献   

3.
一种基于\"当前\"统计模型的自适应滤波算法   总被引:4,自引:1,他引:3  
针对机动目标跟踪问题 ,在“当前”统计模型的基础上 ,利用机动加速度与方差的自适应关系 ,提出了一种新的自适应滤波算法。大量仿真结果表明 ,该算法在跟踪机动目标时 ,具有良好的跟踪性能。  相似文献   

4.
针对"当前"统计模型中目标机动频率和极限加速度值人为设定的不合理性,提出一种基于修正模型的模糊自适应算法(CS-MFA),对机动频率建模以便其估计更新,同时利用目标机动信息来实时调整过程噪声方差,提高系统在目标作非机动或者弱机动时的跟踪精度以及在强机动时的快速响应能力.最后,通过仿真验证了该算法的有效性.  相似文献   

5.
机动目标跟踪广泛应用于军事和民用领域。机动目标跟踪的主要问题之一是建立未知的目标加速度模型。本文阐述了一种跟踪机动目标的机动加速度统计模型--“当前”统计模型,并推导了基于此模型的自适应Kalman跟踪算法。这种模型和算法适用于每一种具体的战术场合和目标机动的当前状况。能够正确直接地估计出机动目标的当前状态,不存在任何估计滞后与修正问题。  相似文献   

6.
针对密集杂波环境下传统概率数据关联算法对突发机动目标跟踪性能下降问题,提出了一种基于采用渐消因子的改进当前统计模型的自适应概率数据关联算法。该算法改进了传统的当前统计模型中加速度方差的计算方式,并在滤波算法中采用了渐消因子,克服了传统卡尔曼滤波的3大缺陷,通过改变预测协方差来修正滤波增益,在保持跟踪精度的前提下,能自适应调整滤波器带宽,增强了系统对突发机动的跟踪能力。理论分析和仿真结果表明,该算法比采用强跟踪滤波器的概率数据关联算法更有效。  相似文献   

7.
基于STF的\"当前\"统计模型及自适应跟踪算法   总被引:17,自引:1,他引:16  
范小军  刘锋  秦勇  张军 《电子学报》2006,34(6):981-984
在\"当前\"统计模型(CS)的基础上,提出了一种新的机动目标自适应跟踪算法STF-CS.该算法通过引入强跟踪滤波器(STF)的渐消因子,实时调节滤波器增益,增强了系统对突发机动的自适应跟踪能力,同时保留了\"当前\"统计模型跟踪算法对一般机动目标跟踪精度高的特点.仿真结果表明,在跟踪一般机动目标时,其误差和\"当前\"统计模型算法相当;在跟踪突发机动目标时,本文算法的误差明显小于\"当前\"统计模型及自适应算法.  相似文献   

8.
提出一种基于改进\"当前\"统计模型的目标自适应跟踪算法.针对\"当前\"统计模型自适应算法对机动加速度极限值有依赖,对弱机动目标跟踪精度不高的问题,采用一种简单的加速度方差自适应调整公式加以克服,在此基础上融合隶属函数对其进行加权改进.为克服算法中自相关时间常数难以选取问题,将不同自相关时间常数的\"当前\"统计模型在交互式多模型框架内进行交互.仿真结果表明,无论对于强机动目标还是弱机动目标,新算法都具有较好的跟踪效果.  相似文献   

9.
针对当前统计模型(CS)不能自适应调节机动参数,导致对弱机动以及强机动目标跟踪性能下降的问题,提出了一种基于Bayesian-Fisher 混合模型的新方法。首先,通过引入Bayesian-Fisher 混合模型,将机动加速度均值作为未知的确定性输入增广到状态变量中,实现了对加速度均值的在线自适应估计;其次,根据强跟踪滤波器(STF)的思想,引入时变渐消因子,增强算法对突变状态的适应能力。仿真结果表明,该算法不仅提高了对弱机动和强机动目标的跟踪精度,也削弱了对初始机动参数的依赖。  相似文献   

10.
机动目标自适应高斯模型与跟踪算法   总被引:4,自引:0,他引:4  
党建武  黄建国 《电讯技术》2003,43(2):109-113,119
提出了一种描述机动目标运动状态的自适应高斯模型,在这种模型中,机动目标的加速度被认为是具有非零均值、时间相关的随机过程,并假定其概率密度函数服从高斯分布。指出了机动目标运动模型的均值和方差与目标机动加速度最佳当前估计值之间的关系,在此基础上,提出了相应的自适应卡尔曼滤波算法。仿真结果表明,该算法对机动目标在不同机动方式下的位置、速度和加速度均有良好的跟踪效果,且所需计算量小。  相似文献   

11.
针对在非线性机动目标跟踪中存在的滤波器易发散、机动检测有延迟等问题,把Unscented Kalman Filter(UKF)引进到交互多模型算法(IMM)中,设计了交互多模型UKF滤波器。并利用目标运动模型集概率的相对变化率设计了自适应交互多模型UKF滤波器,最后进行了计算机仿真。蒙特卡罗仿真结果表明,两种滤波算法都具备UKF滤波器精度高、稳定性好、不易发散的优点,同时不需了解目标机动的先验信息,适合于实际应用;并且自适应交互多模型UKF滤波器具有更好的跟踪效果。  相似文献   

12.
引入输入估计的交互式多模跟踪算法   总被引:2,自引:0,他引:2  
盛琥  杨景曙  曾芳玲  张帆 《电子学报》2009,37(12):2810-2814
 本文融合交互多模算法和修正输入估计算法,提出一种新的全面自适应跟踪算法.利用修正新息序列的方法对输入估计(IE:Input Estimation)算法进行了改进,提高了输入估计的性能.综合不同检测窗长度的修正输入估计(MIE:Modified IE)算法的特点,在交互式多模型中采用不同检测窗长度的MIE作为子滤波器,保持对机动的全面自适应跟踪.仿真实验证明,改进算法与CV-CA模型组成的交互多模算法相比,无论对机动的响应速度还是滤波精度都优于交互多模算法.  相似文献   

13.
匡华星 《雷达与对抗》2010,(4):34-36,44
通过建立目标运动模型,对多种跟踪滤波器进行了分析仿真。仿真结果表明,混合状态估计交互式多模型算法(IMM)对机动目标跟踪效果比其它类型的滤波器好得多,并且确定了在航迹滤波与机动跟踪方面综合表现性能较高的IMMVCVA跟踪算法。通过外场实际数据验证,表明该算法对现实环境中的目标稳定跟踪具有重要的意义。  相似文献   

14.
用于机动目标跟踪的多模型算法进展   总被引:4,自引:0,他引:4  
对多模型算法的发展过程进行了简单的回顾和评述,通过分析固定结构多模型算法的局限性,得出变结构多模型算法的使用时机。  相似文献   

15.
用雷达情报处理系统快速实现机动目标跟踪   总被引:3,自引:1,他引:2       下载免费PDF全文
姚洪利  薛银地 《现代雷达》2004,26(11):38-41,46
如何快速实现对机动目标的自适应跟踪,是雷达情报处理系统中必须解决的问题之一,为提高滤波自适应能力,使之既能适应对机动目标跟踪宽带滤波,又能提高窄带平稳滤波时的精度,提出了对测量噪声方差和过程噪声方差进行调节的方法,并进行大量的仿真实验,确定了调整系数的函数关系。目前此算法已经广泛应用于雷达情报指挥自动化系统。  相似文献   

16.
自适应转弯模型的机动目标跟踪算法   总被引:8,自引:3,他引:5       下载免费PDF全文
赵艳丽  刘剑  罗鹏飞 《现代雷达》2003,25(11):14-16
给出了一种利用白适应转弯速率模型的IMM跟踪算法,可以用于机动目标的跟踪中。每一步通过交互输出的速度和加速度的估计值来计算转弯速率,它的大小等于加速度和速度的比值。本文中对提出的白适应算法和其他两种IMM算法进行了比较。  相似文献   

17.
基于卡尔曼滤波的机动目标外推预测的研究   总被引:1,自引:0,他引:1  
毕进  雷璐  郭敏 《现代电子技术》2012,35(11):42-45,48
卡尔曼滤波在各个领域都有广泛的应用,如航天器的轨道计算、雷达目标跟踪、生产过程的自动控制等。卡尔曼滤波器在机动目标跟踪中具有良好的性能,是一种最佳估计并能够进行递推计算。为了研究卡尔曼滤波对机动目标的预测,首先用Matlab仿真验证自适应卡尔曼滤波的跟踪滤波能力,根据结果判定目标运动模型,进而在此运动模型下用卡尔曼预测对目标进行外推验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号