首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Texture can be defined as a local statistical pattern of texture primitives in observer’s domain of interest. Texture classification aims to assign texture labels to unknown textures, according to training samples and classification rules. This paper describes the usage of wavelet packet neural networks (WPNN) for texture classification problem. The proposed schema composed of a wavelet packet feature extractor and a multi-layer perceptron classifier. Entropy and energy features are integrated wavelet feature extractor. The performed experimental studies show the effectiveness of the WPNN structure. The overall success rate is about 95%.  相似文献   

2.
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. Recently, texton learning based texture classification approaches have been widely studied, where the textons are usually learned via K-means clustering or sparse coding methods. However, the K-means clustering is too coarse to characterize the complex feature space of textures, while sparse texton learning/encoding is time-consuming due to the l0-norm or l1-norm minimization. Moreover, these methods mostly compute the texton histogram as the statistical features for classification, which may not be effective enough. This paper presents an effective and efficient texton learning and encoding scheme for texture classification. First, a regularized least square based texton learning method is developed to learn the dictionary of textons class by class. Second, a fast two-step l2-norm texton encoding method is proposed to code the input texture feature over the concatenated dictionary of all classes. Third, two types of histogram features are defined and computed from the texton encoding outputs: coding coefficients and coding residuals. Finally, the two histogram features are combined for classification via a nearest subspace classifier. Experimental results on the CUReT, KTH_TIPS and UIUC datasets demonstrated that the proposed method is very promising, especially when the number of available training samples is limited.  相似文献   

3.
Spectral features of images, such as Gabor filters and wavelet transform can be used for texture image classification. That is, a classifier is trained based on some labeled texture features as the training set to classify unlabeled texture features of images into some pre-defined classes. The aim of this paper is twofold. First, it investigates the classification performance of using Gabor filters, wavelet transform, and their combination respectively, as the texture feature representation of scenery images (such as mountain, castle, etc.). A k-nearest neighbor (k-NN) classifier and support vector machine (SVM) are also compared. Second, three k-NN classifiers and three SVMs are combined respectively, in which each of the combined three classifiers uses one of the above three texture feature representations respectively, to see whether combining multiple classifiers can outperform the single classifier in terms of scenery image classification. The result shows that a single SVM using Gabor filters provides the highest classification accuracy than the other two spectral features and the combined three k-NN classifiers and three SVMs.  相似文献   

4.
An optimum feature extraction method for texture classification   总被引:1,自引:0,他引:1  
Texture can be defined as a local statistical pattern of texture primitives in observer’s domain of interest. Texture classification aims to assign texture labels to unknown textures, according to training samples and classification rules. In this paper a novel method, which is an intelligent system for texture classification is introduced. It used a combination of genetic algorithm, discrete wavelet transform and neural network for optimum feature extraction from texture images. An algorithm called the intelligent system, which processes the pattern recognition approximation, is developed. We tested the proposed method with several texture images. The overall success rate is about 95%.  相似文献   

5.
提出了一种新的纹理分类的方法,该方法把基于无抽样小波变换的特征提取器和基于欧几里得距离的分类器进行了合并。把方差、偏态系数、峰态系数、三者的联合及谱直方图作为描述纹理图像不相重叠的图像窗的特征。一个使用线性转换矩阵的特征提取器对分类导向的特征做进一步的提取。利用基于欧几里得距离的分类器,每个纹理图像不相重叠的图像窗被确定到属于它的那一类。基于最小分类错误训练方法的特征提取器和分类器设计的合并使分类错误达到了最小化。使用该方法对25类BrodTex纹理图像进行了评估,分类精确度达到90%以上。  相似文献   

6.
在对高光谱图像监督分类中, 传统的监督学习方法对高光谱数据进行分类时需要获取足够的有标记样本作为训练样本, 这样可以有效的避免Hughes效应. 实际情况下的高光谱数据拥有较多的波段和相对较小的训练样本集给传统的遥感图像分类方法带来了挑战. 因此, 提出了一种基于特征组合以及特征加权的高光谱图像分类算法, 针对纹理特征分析难度较大的现实, 利用一阶直方图的统计特征描述图像纹理特征, 通过类内散度矩阵的逆矩阵作为特征加权矩阵构造组合核函数将高光谱光谱特征和空间特征融合起来, 同时利用特征加权的方法用于提高小训练样本的监督分类精度. 实验结果表明, 本文所提的方法对小样本的高光谱数据分类具有良好的效果.  相似文献   

7.
A Model-Based Method for Rotation Invariant Texture Classification   总被引:7,自引:0,他引:7  
This paper presents a new model-based approach for texture classification which is rotation invariant, i.e., the recognition accuracy is not affected if the orientation of the test texture is different from the orientation of the training samples. The method uses three statistical features, two of which are obtained from a new parametric model of the image called a ``circular symmetric autoregressive model.' Two of the proposed features have physical interpretation in terms of the roughness and directionality of the texture. The results of several classification experiments on differently oriented samples of natural textures including both microtextures and macrotextures are presented.  相似文献   

8.
基于Gabor直方图特征和MVBoost的人脸表情识别   总被引:2,自引:0,他引:2  
提出采用Gabor变换与分级直方图统计相结合的方法来提取表情特征,以分层次反映局部区域内纹理变化的信息.这比仅用一维的Gabor系数具有更强的特征表示能力.借助直方图特征,还设计了向量输入、多类连续输出的弱分类器,并嵌入到多类连续AdaBoost的算法框架中,得到了向量输入、多类输出的MVBoost方法.该方法直接对特征进行多类的判决以满足多类时分类的需求,而不必训练多个二分类的AdaBoost分类器,从而使训练过程和分类过程都得到简化.  相似文献   

9.
Rotation Forest, an effective ensemble classifier generation technique, works by using principal component analysis (PCA) to rotate the original feature axes so that different training sets for learning base classifiers can be formed. This paper presents a variant of Rotation Forest, which can be viewed as a combination of Bagging and Rotation Forest. Bagging is used here to inject more randomness into Rotation Forest in order to increase the diversity among the ensemble membership. The experiments conducted with 33 benchmark classification data sets available from the UCI repository, among which a classification tree is adopted as the base learning algorithm, demonstrate that the proposed method generally produces ensemble classifiers with lower error than Bagging, AdaBoost and Rotation Forest. The bias–variance analysis of error performance shows that the proposed method improves the prediction error of a single classifier by reducing much more variance term than the other considered ensemble procedures. Furthermore, the results computed on the data sets with artificial classification noise indicate that the new method is more robust to noise and kappa-error diagrams are employed to investigate the diversity–accuracy patterns of the ensemble classifiers.  相似文献   

10.
The analysis and classification of images, such as texture images, is one of the substantial and important fields in image processing. Due to destructive effects of image rotation and noise, the stability and efficiency of texture analysis and classification methods are an important research area. In this paper, a new method for texture analysis and classification has been proposed which is based on a particular combination of wavelet, ridgelet and Fourier transforms as well as support vector machine. The proposed method has been evaluated for 13 texture datasets produced by three original datasets containing 25 and 111 original textures from Brodatz database and 24 original textures from OUTEX database. These datasets comprise 415584 and 93600 rotated noise-free and noisy texture images for Brodatz database and also 49920 noisy and 4320 noise-free texture images for OUTEX database, respectively. Simulation results demonstrate the capability, efficiency and also stability of the proposed method especially for real-time rotation-invariant and noise-resistant texture analysis and classification.  相似文献   

11.
Several image test suites are available in the literature to evaluate the performance of classification schemes. In the framework of colour texture classification, OuTex-TC-00013 (OuTex) and Contrib-TC-00006 (VisTex) are often used. These colour texture image sets have allowed the accuracies reached by many classification schemes to be compared. However, by analysing the classification results obtained with these two sets of colour texture images, we have noticed that the use of colour histogram yields a higher rate of well-classified images compared to colour texture features. It does not take into account any texture information in the image, this incoherence leads us to question the relevance of these two benchmark colour texture sets for measuring the performances of colour texture classification algorithms. Indeed, the partitioning used to build these two sets consists of extracting training and validating sub-images of an original image. We show that such partitioning leads to biased classification results when it is combined with a classifier such as the nearest neighbour. In this paper a new relevant image test suite is proposed for evaluating colour texture classification schemes. The training and the validating sub-images come from different original images in order to ensure that the correlation of the colour texture images is minimized.  相似文献   

12.
Machine vision based inspection systems are in great focus nowadays for quality control applications. The proposed work presents a novel approach for classification of wood knot defects for an automated inspection. The proposed technique utilizes gray level co-occurrence matrix and laws texture energy measures as texture feature extractors and feed-forward back-propagation neural network as classifier. The proposed work involves the comparison of gray level co-occurrence matrix based features with laws texture energy measures based features. Firstly it takes contrast, correlation, energy and homogeneity as input parameters to a feed-forward back propagation neural network to predict wood defects and then it take energy calculated from laws texture energy measures based energy maps as input feature to a feed-forward back propagation neural network. Mean Square Error (MSE) for training data is found to be 0.0718 and 90.5% overall average classification accuracy is achieved when laws texture energy measures based features are used as input to the neural network as compared to gray level co-occurrence matrix based input features where MSE for training data is found to be 0.10728 and 84.3% overall average classification accuracy is achieved. The proposed technique shows promising results to classify wood defects using a feed forward back-propagation neural network.  相似文献   

13.
The extraction of texture features from high‐resolution remote sensing imagery provides a complementary source of data for those applications in which the spectral information is not sufficient for identification or classification of spectrally similar landscape features. This study presents the results of grey‐level co‐occurrence matrix (GLCM) and wavelet transform (WT) texture analysis for forest and non‐forest vegetation types differentiation in QuickBird imagery. Using semivariogram fitting, the optimal GLCM windows for the land cover classes within the scene were determined. These optimal window sizes were then applied to eight GLCM texture measures (mean, variance, homogeneity, dissimilarity, contrast, entropy, angular second moment, and correlation) for the scene classification. Using wavelet transformation, up to five levels of macro‐texture were computed and tested in the classification process. Comparing the classification results, (1) the spectral‐only bands classification gave an overall accuracy of 58.69%; (2) the statistically derived 21×21 optimal mean texture combined with spectral information gave the best results among the GLCM optimal windows with an accuracy of 73.70%; and (3) the combined optimal WT‐texture levels 4 and 5 gave an accuracy of 63.56%. The combined classification of these three optimal results gave an overall accuracy of 77.93%. The results indicate that even though vegetation texture was generally measured better by the GLCM‐mean texture (micro‐textures) than by WT‐derived texture (macro‐textures), the results show that the micro–macro texture combination would improve the differentiation and classification of the overall vegetation types. Overall, the results suggests that computer‐assisted classification of high‐spatial‐resolution remotely sensed imagery has a good potential to augment the present ground‐based forest inventory methods.  相似文献   

14.
In this paper, a robust radial basis function (RBF) network based classifier is proposed for polarimetric synthetic aperture radar (SAR) images. The proposed feature extraction process utilizes the covariance matrix elements, the H/α/A decomposition based features combined with the backscattering power (span), and the gray level co-occurrence matrix (GLCM) based texture features, which are projected onto a lower dimensional feature space using principal components analysis. For the classifier training, both conventional backpropagation (BP) and multidimensional particle swarm optimization (MD-PSO) based dynamic clustering are explored. By combining complete polarimetric covariance matrix and eigenvalue decomposition based pixel values with textural information (contrast, correlation, energy, and homogeneity) in the feature set, and employing automated evolutionary RBF classifier for the pattern recognition unit, the overall classification performance is shown to be significantly improved. An experimental study is performed using the fully polarimetric San Francisco Bay and Flevoland data sets acquired by the NASA/Jet Propulsion Laboratory Airborne SAR (AIRSAR) at L-band to evaluate the performance of the proposed classifier. Classification results (in terms of confusion matrix, overall accuracy and classification map) compared with the major state of the art algorithms demonstrate the effectiveness of the proposed RBF network classifier.  相似文献   

15.
Texture classification is an important aspect of many digital image processing applications such as surface inspection, content-based image retrieval, and biomedical image analysis. However, noise and compression artifacts in images cause problems for most texture analysis methods. This paper proposes the use of features based on the human visual system for texture classification using a semisupervised, hierarchical approach. The texture feature consists of responses of cells which are found in the visual cortex of higher primates. Classification experiments on different texture libraries indicate that the proposed features obtain a very high classification near 97%. In contrast to other well-established texture analysis methods, the experiments indicate that the proposed features are more robust to various levels of speckle and Gaussian noise. Furthermore, we show that the classification rate of the textures using the presented biologically inspired features is hardly affected by image compression techniques.  相似文献   

16.
17.
New hyperspectral sensors can collect a large number of spectral bands, which provide a capability to distinguish various objects and materials on the earth. However, the accurate classification of these images is still a big challenge. Previous studies demonstrate the effectiveness of combination of spectral data and spatial information for better classification of hyperspectral images. In this article, this approach is followed to propose a novel three-step spectral–spatial method for classification of hyperspectral images. In the first step, Gabor filters are applied for texture feature extraction. In the second step, spectral and texture features are separately classified by a probabilistic Support Vector Machine (SVM) pixel-wise classifier to estimate per-pixel probability. Therefore, two probabilities are obtained for each pixel of the image. In the third step, the total probability is calculated by a linear combination of the previous probabilities on which a control parameter determines the efficacy of each one. As a result, one pixel is assigned to one class which has the highest total probability. This method is performed in multivariate analysis framework (MAF) on which one pixel is represented by a d-dimensional vector, d is the number of spectral or texture features, and in functional data analysis (FDA) on which one pixel is considered as a continuous function. The proposed method is evaluated with different training samples on two hyperspectral data. The combination parameter is experimentally obtained for each hyperspectral data set as well as for each training samples. This parameter adjusts the efficacy of the spectral versus texture information in various areas such as forest, agricultural or urban area to get the best classification accuracy. Experimental results show high performance of the proposed method for hyperspectral image classification. In addition, these results confirm that the proposed method achieves better results in FDA than in MAF. Comparison with some state-of-the-art spectral–spatial classification methods demonstrates that the proposed method can significantly improve classification accuracies.  相似文献   

18.
The research related to age estimation using face images has become increasingly important, due to the fact it has a variety of potentially useful applications. An age estimation system is generally composed of aging feature extraction and feature classification; both of which are important in order to improve the performance. For the aging feature extraction, the hybrid features, which are a combination of global and local features, have received a great deal of attention, because this method can compensate for defects found in individual global and local features. As for feature classification, the hierarchical classifier, which is composed of an age group classification (e.g. the class of less than 20 years old, the class of 20-39 years old, etc.) and a detailed age estimation (e.g. 17, 23 years old, etc.), provide a much better performance than other methods. However, both the hybrid features and hierarchical classifier methods have only been studied independently and no research combining them has yet been conducted in the previous works. Consequently, we propose a new age estimation method using a hierarchical classifier method based on both global and local facial features. Our research is novel in the following three ways, compared to the previous works. Firstly, age estimation accuracy is greatly improved through a combination of the proposed hybrid features and the hierarchical classifier. Secondly, new local feature extraction methods are proposed in order to improve the performance of the hybrid features. The wrinkle feature is extracted using a set of region specific Gabor filters, each of which is designed based on the regional direction of the wrinkles, and the skin feature is extracted using a local binary pattern (LBP), capable of extracting the detailed textures of skin. Thirdly, the improved hierarchical classifier is based on a support vector machine (SVM) and a support vector regression (SVR). To reduce the error propagation of the hierarchical classifier, each age group classifier is designed so that the age range to be estimated is overlapped by consideration of false acceptance error (FAE) and false rejection error (FRE) of each classifier. The experimental results showed that the performance of the proposed method was superior to that of the previous methods when using the BERC, PAL and FG-Net aging databases.  相似文献   

19.
ABSTRACT

Network Intrusion Detection System (NIDS) is often used to classify network traffic in an attempt to protect computer systems from various network attacks. A major component for building an efficient intrusion detection system is the preprocessing of network traffic and identification of essential features which is essential for building robust classifier. In this study, a NIDS based on deep learning model optimized with rule-based hybrid feature selection is proposed. The architecture is divided into three phases namely: hybrid feature selection, rule evaluation and detection. Several search methods and attribute evaluators were combined for features selection to enhance experimentation and comparison. The results obtained showed that the number of selected features will not affect the detection accuracy of the feature selection algorithms, but directly proportional to the performance of the base classifier. Results from the performance comparison proved that the proposed method outperforms other related methods with reduction of false alarm rate, high accuracy rate, reduced training and testing time of 1.2%, 98.8%, 7.17s and 3.11s, respectively. Finally, the simulation experiments on standard evaluation metrics showed that the proposed method is suitable for attack classification in NIDS.  相似文献   

20.
This paper presents a hybrid technique for the classification of the magnetic resonance images (MRI). The proposed hybrid technique consists of three stages, namely, feature extraction, dimensionality reduction, and classification. In the first stage, we have obtained the features related to MRI images using discrete wavelet transformation (DWT). In the second stage, the features of magnetic resonance images have been reduced, using principal component analysis (PCA), to the more essential features. In the classification stage, two classifiers have been developed. The first classifier based on feed forward back-propagation artificial neural network (FP-ANN) and the second classifier is based on k-nearest neighbor (k-NN). The classifiers have been used to classify subjects as normal or abnormal MRI human images. A classification with a success of 97% and 98% has been obtained by FP-ANN and k-NN, respectively. This result shows that the proposed technique is robust and effective compared with other recent work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号