首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The synthesis of mixed conducting PdO-NiO-SDC composite films has been reported for the first time by a simple and cost effective spray pyrolysis technique. The films were deposited at low substrate and annealing temperatures of 350 °C and 500 °C, respectively. The structure, morphology and electrical properties of the films were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and impedance spectroscopy (IS). The substrate and annealing temperatures were optimized for obtaining nano-crystalline, porous, adherent and composite films with PdO, NiO and SDC phases. Films showed good microstructure with sufficient porosity and good connectivity of the deposited material. Crystallite size of the deposited material was found to be in the range of 7-9 nm. The deposited film showed high oxygen ion conductivity, 3.94 × 10−1 S cm−1 at 350 °C. Due to their nano-crystalline, porous and composite nature the spray deposited PdO-NiO-SDC films may have high three phase boundary area and hence can be considered as an anode for intermediate temperature solid oxide fuel cells.  相似文献   

2.
Transparent conductive indium tin oxide (ITO) thin films were deposited on transparent flexible clay films with heat resistant and high gas barrier properties by rf magnetron sputtering. The electrical, structural, and optical properties of these films were examined as a function of deposition temperature. A lowest resistivity of 4.2 × 10− 4 Ωcm and an average transmittance more than 90% in the visible region were obtained for the ITO thin films fabricated at deposition temperatures more than 300 °C. It was found that ITO thin films with low resistivity and high transparency can be achieved on transparent flexible clay film using conventional rf magnetron sputtering at high temperature, those characteristics are comparable to those of ITO thin films deposited on a glass substrate.  相似文献   

3.
In this study, N-doped ZnO thin films were fabricated by oxidation of ZnxNy films. The ZnxNy thin films were deposited on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) using metallic zinc wire (99.999%) as a cathode target in pure nitrogen plasma. The influence of oxidation temperature, on the electrical, structural and optical properties of N-doped ZnO films was investigated. P-type conduction was achieved for the N-doped ZnO obtained at 450 °C by oxidation of ZnxNy, with a resistivity of 16.1 Ω cm, hole concentration of 2.03 × 1016 cm−3 and Hall mobility of 19 cm2/V s. X-ray photoelectron spectroscopy (XPS) analysis confirmed the incorporation of N into the ZnO films. X-ray diffraction (XRD) pattern showed that the films as-deposited and oxidized at 350 °C were amorphous. However, the oxidized films in air atmosphere at 450-550 °C were polycrystalline without preferential orientation. In room temperature photoluminescence (PL) spectra, an ultraviolet (UV) peak was seen for all the samples. In addition, a broad deep level emission was observed.  相似文献   

4.
Zinc oxide thin films with low resistivity have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified successive ionic layer adsorption and reaction process. The thin films were systematically characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, ultraviolet-visible spectrophotometry and fluorescence spectrophotometry. The resistivity of zinc oxide film was found to be 1.04 Ω cm with a Hall mobility of 0.749 cm2 V−1 s−1 and carrier concentration of 8.02 × 1018 cm−3. The Li-N dual-acceptor doped zinc oxide films showed good crystallinity with prior c-axis orientation, and high transmittance of about 80% in visible range. Moreover, the effects of Li doping level and other parameters on crystallinity, electrical and ultraviolet emission of zinc oxide films were investigated.  相似文献   

5.
Ferroelectric PMN-PT thin films with a thickness of 600 nm were epitaxially grown on buffered Si (0 0 1) substrates at a substrate temperature that ranged from 550 to 700 °C using pulsed laser deposition (PLD). LaNiO3 (LNO) electrode thin films with a resistivity of ∼1900 μΩ cm were epitaxially grown on CeO2/YSZ buffered Si (0 0 1) substrates. The PMN-PT thin films grown at 600 °C on LNO/CeO2/YSZ/Si substrates had a pure perovskite and epitaxial structure. The PMN-PT films exhibited a high dielectric constant of about 1818 and a low dissipation factor of 0.04 at a frequency of 10 kHz. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization of 11.1 μC/cm2 and a coercive field of 43 kV/cm, were obtained in the epitaxial PMN-PT films.  相似文献   

6.
ZrC thin films were grown on (100) Si substrates by the pulsed laser deposition (PLD) technique using a high-repetition rate excimer laser working at 40 Hz. The substrate temperature during depositions was set at 300 °C and the cooling rate was 5 °C/min. X-ray diffraction investigations showed that the films were crystalline. Films deposited under residual vacuum or 2 × 10− 3 Pa of CH4 atmosphere exhibited a (200)-axis texture, while those deposited under 2 × 10− 2 Pa of CH4 atmosphere were found to be equiaxed. The surface elemental composition of as-deposited films, analyzed by Auger electron spectroscopy (AES), showed the usual high oxygen contamination of carbides. Once the topmost − 3-5 nm region was removed, the oxygen concentration rapidly decreased, being around 3-4% only in bulk. Scanning electron microscopy (SEM) investigations showed a smooth, featureless surface morphology, corroborating the roughness values below 1 nm (rms) obtained from simulations of the X-ray reflectivity (XRR) curves. From the same simulations we also estimated films mass density values of around 6.32-6.57 g/cm3 and thicknesses that correspond to a deposition rate of around 8.25 nm/min. Nanoindentation results showed a hardness of 27.6 GPa and a reduced modulus of 228 GPa for the best quality ZrC films deposited under an atmosphere of 2 × 10− 3 Pa CH4.  相似文献   

7.
Magnesium stannide (Mg2Sn) thin films doped with Ag intended for thermoelectric applications are deposited on both silicon and glass substrates at room temperature by plasma assisted co-sputtering. Characterization by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction confirms the formation of fine-grained polycrystalline thin films with thickness of 1-3 μm. Stoichiometry, microstructure and crystal structure of thin films are found to vary with target biasing and the distance from targets to substrate. Measurements of electrical resistivity and Seebeck coefficient at room temperature show the maximum power factor of ∼5.0 × 10−3 W K−2 m−1 for stoichiometric Mg2Sn thin films doped with ∼1 at.% Ag.  相似文献   

8.
Cd1−xZnxS (0 ≤ x ≤ 1) thin films have been deposited by chemical bath deposition method on glass substrates from aqueous solution containing cadmium acetate, zinc acetate and thiourea at 80 ± 5 °C and after annealed at 350 °C. The structural, morphological, compositional and optical properties of the deposited Cd1−xZnxS thin films have been studied by X-ray diffractometer, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), photoluminescence (PL) and UV-vis spectrophotometer, respectively. X-ray diffraction analysis shows that for x < 0.8, the crystal structure of Cd1−xZnxS thin films was hexagonal structure. For x > 0.6, however, the Cd1−xZnxS films were grown with cubic structure. Annealing the samples at 350 °C in air for 45 min resulted in increase in intensity as well as a shift towards lower scattering angles. The parameters such as crystallite size, strain, dislocation density and texture coefficient are calculated from X-ray diffraction studies. SEM studies reveal the formation of Cd1−xZnxS films with uniformly distributed grains over the entire surface of the substrate. The EDX analysis shows the content of atomic percentage. Optical method was used to determine the band gap of the films. The photoluminescence spectra of films have been studied and the results are discussed.  相似文献   

9.
Stoichiometric compound of copper indium sulfur (CuIn5S8) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 Å. Thin films of CuIn5S8 were deposited onto glass substrates under the pressure of 10−6 Torr using thermal evaporation technique. CuIn5S8 thin films were then thermally annealed in air from 100 to 300 °C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn5S8 thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 °C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 104 cm−1 was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 300 °C.  相似文献   

10.
Highly transparent, p-type conducting SnO2:Zn thin films are prepared from the thermal diffusion of a sandwich structure of Zn/SnO2/Zn multilayer thin films deposited on quartz glass substrate by direct current (DC) and radio frequency (RF) magnetron sputtering using Zn and SnO2 targets. The deposited films were annealed at various temperatures for thermal diffusion. The effect of annealing temperature and time on the structural, electrical and optical performances of SnO2:Zn films was studied. XRD results show that all p-type conducting films possessed polycrystalline SnO2 with tetragonal rutile structure. Hall effect results indicate that the treatment at 400 °C for 6 h was the optimum annealing parameters for p-type SnO2:Zn films which have relatively high hole concentration and low resistivity of 2.389 × 1017 cm− 3 and 7.436 Ω cm, respectively. The average transmission of the p-type SnO2:Zn films was above 80% in the visible light range.  相似文献   

11.
Gadolinium (Gd) doped cadmium oxide (CdO) thin films are grown at low temperature (100 °C) using pulsed laser deposition technique. The effect of oxygen partial pressures on structural, optical, and electrical properties is studied. X-ray diffraction studies reveal that these films are polycrystalline in nature with preferred orientation along (1 1 1) direction. Atomic force microscopy studies show that these films are very smooth with maximum root mean square roughness of 0.77 nm. These films are highly transparent and transparency of the films increases with increase in oxygen partial pressure. We observe an increase in optical bandgap of CdO films by Gd doping. The maximum optical band gap of 3.4 eV is observed for films grown at 1 × 10−5 mbar. The electrical resistivity of the films first decreases and then increases with increase in oxygen partial pressure. The lowest electrical resistivity of 2.71 × 10−5 Ω cm and highest mobility of 258 cm2/Vs is observed. These low temperature processed highly conducting, transparent, and wide bandgap semiconducting films could be used for flexible optoelectronic applications.  相似文献   

12.
TiO2 thin films were deposited by DC reactive magnetron sputtering. Some TiO2 thin films samples were annealed for 5 min at different temperatures from 300 to 900 °C. The structure and optical properties of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and ultraviolet-visible (UV-vis) spectrophotometry, respectively. The influence of the annealing temperature on the structure and optical properties of the films was investigated. The results show that the as-deposited TiO2 thin films are mixtures of anatase and rutile phases, and possess the column-like crystallite texture. With the annealing temperature increasing, the refractive index and extinction coefficient increase. When the annealing temperature is lower than 900 °C, the anatase phase is the dominant crystalline phase; the weight fraction of the rutile phase does not increase significantly during annealing process. As the annealing temperature rises to 900 °C, the rutile phase with the large extinction coefficient becomes the dominant crystalline phase, and the columnar structure disappears. The films annealed at 300 °C have the best optical properties for the antireflection coatings, whose refractive index and extinction coefficient are 2.42 and 8 × 10−4 (at 550 nm), respectively.  相似文献   

13.
Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO2; 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO films were annealed at 450 °C in vacuum. These films were characterized to study the effect of annealing and addition of SnO2 concentration on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZTO films strongly depends on the concentration of SnO2 and post annealing where annealed films showed polycrystalline nature. Atomic force microscopy (AFM) images manifest the surface morphology of these ZTO thin films. The XPS core level spectra of Zn(2p), O(1s) and Sn(3d) have been deconvoluted into their Gaussian component to evaluate the chemical changes, while valence band spectra reveal the electronic structures of these films. A small shift in Zn(2p) and Sn(3d) core level towards higher binding energy and O(1s) core level towards lower binding energy have been observed. The minimum electrical resistivity (ρ ≈ 3.69 × 10−2 Ω-cm), maximum carrier concentration (n ≈ 3.26 × 1019 cm−3) and Hall mobility (μ ≈ 5.2 cm2 v−1 s−1) were obtained for as-prepared ZTO (50:50) film thereafter move towards lowest resistivity (ρ ≈ 1.12 × 10−3 Ω-cm), highest carrier concentration (n ≈ 2.96 × 1020 cm−3) and mobility (μ ≈ 18.8 cm2 v−1 s−1) for annealed ZTO (50:50) thin film.  相似文献   

14.
Sol-gel spin coating method has been successfully employed for the deposition of nanocrystalline nickel oxide (NiO) thin films. The films were annealed at 400-700 °C for 1 h in an air and changes in the structural, morphological, electrical and optical properties were studied. The structural properties of nickel oxide films were studied by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis shows that all the films are crystallized in the cubic phase and present a random orientation. Surface morphology of the nickel oxide film consists of nanocrystalline grains with uniform coverage of the substrate surface with randomly oriented morphology. The electrical conductivity showed the semiconducting nature with room temperature electrical conductivity increased from 10−4 to 10−2 (Ω cm)−1 after annealing. The decrease in the band gap energy from 3.86 to 3.47 eV was observed after annealing NiO films from 400 to 700 °C. These mean that the optical quality of NiO films is improved by annealing.  相似文献   

15.
The effect of different mild post-annealing treatments in air, at 270 °C, for 4-6 min, on the optical, electrical, structural and chemical properties of copper sulphide (CuxS) thin films deposited at room temperature are investigated. CuxS films, 70 nm thick, are deposited on glass substrates by vacuum thermal evaporation from a Cu2S:S (50:50 wt.%) sulphur rich powder mixture. The as-deposited highly conductive crystalline CuS (covellite) films show high carrier concentration (∼1022 cm−3), low electrical resistivity (∼10−4 Ω cm) and inconclusive p-type conduction. After the mild post-annealing, these films display increasing values of resistivity (∼10−3 to ∼10−2 Ω cm) with annealing time and exhibit conclusive p-type conduction. An increase of copper content in CuxS phases towards the semiconductive Cu2S (chalcocite) compound with annealing time is reported, due to re-evaporation of sulphur from the films. However, the latter stoichiometry was not obtained, which indicates the presence of vacancies in the Cu lattice. In the most resistive films a Cu2O phase is also observed, diminishing the amount of available copper to combine with sulphur, and therefore the highest values of optical transmittance are reached (65%). The appearance on the surface of amorphous sulphates with annealing time increase is also detected as a consequence of sulphur oxidation and replacement of sulphur with oxygen. All annealed films are copper deficient in regards to the stoichiometric Cu2S and exhibit stable p-type conductivity.  相似文献   

16.
The nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni0.8Zn0.2Fe2O4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm−1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5°.The electrochemical supercapacitor study of Ni0.8Zn0.2Fe2O4 thin films has been carried out in 6 M KOH electrolyte.The values of interfacial and specific capacitances obtained were 0.0285 F cm−2 and 19 F g−1, respectively.  相似文献   

17.
Bi2Zn2/3Nb4/3O7 thin films were deposited on Pt/TiO2/SiO2/Si(1 0 0) substrates at a room temperature under the oxygen pressure of 1-10 Pa by pulsed laser deposition. Bi2Zn2/3Nb4/3O7 thin films were then post-annealed below 200 °C in a rapid thermal process furnace in air for 20 min. The dielectric and leakage current properties of Bi2Zn2/3Nb4/3O7 thin films are strongly influenced by the oxygen pressure during deposition and the post-annealing temperature. Bi2Zn2/3Nb4/3O7 thin films deposited under 1 Pa oxygen pressure and then post-annealed at a temperature of 150 °C show uniform surface morphologies. Dielectric constant and loss tangent are 57 and 0.005 at 10 kHz, respectively. The high resolution TEM image and the electron diffraction pattern show that nano crystallites exist in the amorphous thin film, which may be the origin of high dielectric constant in the Bi2Zn2/3Nb4/3O7 thin films deposited at low temperatures. Moreover, Bi2Zn2/3Nb4/3O7 thin film exhibits the excellent leakage current characteristics with a high breakdown strength and the leakage current density is approximately 1 × 10−7 A/cm2 at an applied bias field of 300 kV/cm. Bi2Zn2/3Nb4/3O7 thin films are potential materials for embedded capacitor applications.  相似文献   

18.
Preparation of highly conducting and transparent In-doped Cd2SnO4 thin film by spray pyrolysis method at a substrate temperature of 525 °C is reported. In-doping concentration is varied between 1 and 5 wt.%. The effect of In-doping on structural, optical and electrical properties was investigated using different techniques such as X-ray diffraction, atomic force microscopy, optical transmittance and Hall measurement. X-ray diffraction studies revealed that the films are polycrystalline with cubic crystal structure. The undoped and In-doped Cd2SnO4 films exhibit excellent optical transparency. The average optical transmittance is ∼87% in the visible range for 3 wt.% In-doping. Further In-doping widens the optical band gap from 2.98 ± 0.1 eV to 3.04 ± 0.1 eV. A minimum resistivity of 1.76 ± 0.2 × 10−3 Ω cm and maximum carrier concentration of 9.812 ± 0.4 × 1019 cm−3 have been achieved for 1 wt.% In-doping in Cd2SnO4 thin films.  相似文献   

19.
Y2O3 thin films were prepared by rf-sputtering under various sputtering pressures at room temperature. Spectroscopic ellipsometer, X-ray diffraction and semiconductor parameter analyzer were used to characterize the studied films. The results show the crystallinity and leakage current density of the films improved with decreasing sputtering pressure. The effects of post-metallization annealing (PMA) on optical, structural and electrical properties of the films were also evaluated. It is found that PMA can significantly enhance the electrical performance of Y2O3 film, and the lowest leakage current is found to be 1.54 × 10−8 A/cm2 at 1 MV/cm for the samples treated at 350 °C for 30 min. The leakage current mechanisms were discussed as well, which reveals that space charge limited current dominates the as-deposited films while Schottky mechanism describes the PMA treated ones well.  相似文献   

20.
Thin films of La and Si with Si/(La + Si) atomic ratios ranging from 0.36 to 0.44 were produced by magnetron sputtering in pure Ar. For all compositions, the apatite-like La9.33Si6O26 phase was formed during annealing in air at 900 °C. A preferential orientation was developed during annealing of the films with higher silicon content while formation of oxide impurities was detected for the films with less silicon. Silicon segregation to the thin film/substrate interface was observed after annealing for thin films with higher Si/(La + Si) atomic ratios. The higher ionic conductivity values were obtained with the films with lower silicon content (2.81 × 10− 3 Scm− 1 at 800 °C for the film with Si/(La + Si) atomic ratio of 0.36). This film presented the lower activation energy Ea (0.94 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号