首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure, microstructure, dielectric and ferroelectric properties of (1 − x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics with x = 0, 0.03, 0.05, 0.07 and 0.1 are investigated. A structural variation according to the system composition was investigated by X-ray diffraction (XRD) analyses. The results revealed that the synthesis temperature for pure perovskite phase powder prepared by the present sol-gel process is much lower (800 °C), and a rhombohedral-tetragonal morphotropic phase boundary (MPB) is found for x = 0.07 composition which showing the highest remanent polarization value and the smallest coercive field. The optimum dielectric and piezoelectric properties were found with the 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 composition. The piezoelectric constant d33 is 120 pC/N and good polarization behaviour was observed with remanent polarization (Pr) of 12.18 pC/cm2, coercive field (Ec) of 2.11 kV/mm, and enhanced dielectric properties ?r > 1500 at room temperature. The 0.93Na0.5Bi0.5TiO3-0.07BaTiO3-based ceramic is a promising lead-free piezoelectric candidate for applications in different devices.  相似文献   

2.
Lead-free piezoelectric ceramics (0.8 − x)BaTiO3-0.2Bi0.5Na0.5TiO3-xBaZrO3 (BT-BNT-xBZ, 0 ≤ x ≤ 0.08) doped with 0.3 wt% Li2CO3 were prepared by conventional solid-state reaction method. With the Li2CO3 doping, all the ceramics can be well sintered at 1170-1210 °C. The phase structure, dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between tetragonal and pseudocubic phases exists at x = 0.03-0.04. The addition of Zr can improve the piezoelectric properties of BT-BNT ceramics. Furthermore, a relaxor behavior is induced and the tetragonal-cubic phase transition shifts towards lower temperatures after the addition of Zr. The ceramics with x = 0.03 possess the optimum electrical properties: d33 = 72 pC/N, kp = 15.4%, ?r = 661, Pr = 18.5 μC/cm2, Ec = 34.1 kV/cm, Tc = 150 °C.  相似文献   

3.
Lead-free (1 − x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 (BNBT-xKN, x = 0-0.08) ceramics were prepared by ordinary ceramic sintering technique. The piezoelectric, dielectric and ferroelectric properties of the ceramics are investigated and discussed. The results of X-ray diffraction (XRD) indicate that KNbO3 (KN) has diffused into Bi0.47Na0.47Ba0.06TiO3 (BNBT) lattices to form a solid solution with a pure perovskite structure. Moderate additive of KN (x ≤ 0.02) in BNBT-xKN ceramics enhance their piezoelectric and ferroelectric properties. Three dielectric anomaly peaks are observed in BNBT-0.00KN, BNBT-0.01KN and BNBT-0.02KN ceramics. With the increment of KN in BNBT-xKN ceramics, the dielectric anomaly peaks shift to lower temperature. BNBT-0.01KN ceramic exhibits excellent piezoelectric properties and strong ferroelectricity: piezoelectric coefficient, d33 = 195 pC/N; electromechanical coupling factor, kt = 58.9 and kp = 29.3%; mechanical quality factor, Qm = 113; remnant polarization, Pr = 41.8 μC/cm2; coercive field, Ec = 19.5 kV/cm.  相似文献   

4.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

5.
The ternary system (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 (abbreviated to BNKLT-x/y) was synthesized by conventional oxide-mixed method. The phase structure, microstructure, and dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. The X-ray diffraction patterns showed that pure perovskite phase with rhombohedral structure can be obtained in all the ceramics. The grain size varied with x and y. The temperature dependence of dielectric constant and dielectric loss revealed there were two phase transitions which were from ferroelectric (tetragonal) to anti-ferroelectric (rhombohedral) and anti-ferroelectric to paraelectric (cubic). Either increasing x or y content can make Tm (the temperature at which dielectric constant r reaches the maximum) increase. With the addition of Bi0.5K0.5TiO3, the remanent polarization Pr increased but the coercive field Ec decreased. With the addition of Bi0.5Li0.5TiO3, Pr increased obviously and Ec increased slightly. Due to the stronger ferroelectricity by modifying Bi0.5K0.5TiO3 and Bi0.5Li0.5TiO3, the piezoelectric properties were enhanced at x = 0.22 and y = 0.10, which were as follows: Pr = 31.92 μC/cm2, Ec = 32.40 kV/cm, r = 1118, tan δ = 0.041, d33 = 203 pC/N and Kp = 0.31. The results show that the BNKLT-x/y ceramics are promising candidates for the lead-free materials.  相似文献   

6.
Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 (BNT-BT-BKT) lead-free piezoceramics with compositions near the rhombohedral-tetragonal morphotropic phase boundary (MPB) were prepared and investigated. At room temperature, all ceramics show excellent electrical properties. In this study, the best properties were observed in 0.884BNT-0.036BT-0.08BKT, with the remnant polarization, bipolar total strain, unipolar strain, piezoelectric constant, and planar electromechanical coupling factor being 34.4 μC cm−2, 0.25%, 0.15%, 122 pC N−1, and 0.30, respectively. Detailed analysis of the temperature dependence of polarization-electric field (P-E) loops and bipolar/unipolar strain-electric field (S-E) curves of this composition revealed a ferroelectric-antiferroelectric phase transition around 100 °C. Around this temperature, there is a significant shape change in both P-E and S-E curves, accompanied by enhanced strain and decreased polarization; the largest recoverable strain reaches 0.42%. These results can be explained by the formation of antiferroelectric order and the contribution of field-induced antiferroelectric-ferroelectric phase transition to piezoelectric response. Our results indicate that BNT-BT-BKT lead-free piezoceramics can have excellent electrical properties in compositions near the MPB and also reveal some insight into the temperature dependence of the electrical performance with the MPB composition.  相似文献   

7.
Bismuth potassium titanate (Bi0.5K0.5TiO3; BKT) and praseodymium-doped BKT (Bi0.5(1−x)PrxK0.5TiO3; BPKT) powders were synthesised using the soft combustion technique. Fine particles of 10-100 nm of BKT and BPKT were produced. A single phase BKT was obtained with a minimum of 0.5 mol of glycine. Various compounds of Bi0.5(1−x)PrxK0.5TiO3 where x = 0.01, 0.03, 0.05, 0.10, 0.15 and 0.20 were prepared. Pure BKT and BPKT powders were obtained after calcination at 800 °C for 3 h. After sintering at 1050 °C for 5 h, pure BKT and BPKT pellets were obtained for x = 0 and 0.01. However, for BPKT with x = 0.03, 0.05, 0.10, 0.15 and 0.20, a minor amount of Bi4Ti3O12 (BIT) secondary phase was present after sintering at 1050 °C for 5 h. The crystallite size and grain size of all the samples followed similar trends, first increasing from x = 0 (undoped BKT) to x = 0.05 and then decreasing above x = 0.05. Among the undoped and doped samples, BPKT with x = 0.05 had the highest dielectric properties (?r = 713.87) due to its large crystallite size (68.66 nm), large grain size (∼435 nm) and high relative density (93.39%).  相似文献   

8.
9.
The phase transition behavior and its effect on thermal stability of the piezoelectric properties of the (1 − x)[0.65PbMg1/3Nb2/3O3-0.35PbTiO3]-xBiZn1/2Ti1/2O3 ceramics with 0 ≤ x ≤ 0.06 were investigated. The phase transition from the monoclinic to tetragonal phase was determined by the dielectric constant and elastic constant measurements. The temperature independent piezoelectric response with −d31 = 188 pC/N was obtained from 175 to 337 K for the composition with x = 0.02. The enhanced thermal stability of piezoelectric response was achieved by shifting the monoclinic-tetragonal phase transition to the lower temperature.  相似文献   

10.
(1 − x)K0.02Na0.98NbO3-xBaTiO3 ceramics were prepared by the solid state reaction method, and their electrical properties were investigated. The samples showed crystal structure changing from monoclinic to orthorhombic, and then to tetragonal, with an increase in BaTiO3 content. The addition of BaTiO3 markedly enhanced ferroelectric and piezoelectric properties of K0.02Na0.98NbO3 ceramics. Remnant polarization increased and coercive field decreased only in the samples with small amount of BaTiO3. Piezoelectric properties were improved with the addition of BaTiO3. The 0.9K0.02Na0.98NbO3-0.1BaTiO3 ceramics showed maximum piezoelectric constant (d33 = 160 pC/N), which was even comparable with that of (1 − x)K0.5Na0.5NbO3-xBaTiO3 ceramics. Their good piezoelectric properties, along with a low ferroelectric-ferroelectric transition temperature (TF-F), made the 0.9K0.02Na0.98NbO3-0.1BaTiO3 ceramics a potential candidate for lead-free piezoelectric applications.  相似文献   

11.
Lead-free piezoelectric ceramics Sr2−xCaxNaNb5O15 + y wt% MnO2have been prepared by the conventional solid state reaction method. Our results reveal that Ca2+and Mn ions have entered into the Sr2NaNb5O15 lattices to form a solid solution with tungsten-bronze structure. The substitution of Ca2+ induces a decrease in piezoelectric coefficient d33, electromechanical coupling factors kp and kt, while, the addition of Mn ions decreases the sintering temperature and effectively promotes the densification of the ceramics. The effect of substitution of Ca2+and Mn ions on the structure, electrical properties and diffused phase changing were investigated systematically. For the ceramic with x = 0.05 and y = 0.5, the piezoelectric, dielectric and ferroelectric properties become optimum, giving a piezoelectric coefficient d33 = 190 pC/N, electromechanical coupling factors kp = 13.4% and kt = 36.5%, ?r = 2123, loss tangent tan δ = 0.038, remanent polarization Pr = 4.76 μC/cm2, coercive field Ec = 12.68 kV/cm, and Curie temperature Tc = 260 °C.  相似文献   

12.
The structure, ferroelectric and magnetic properties of (1 − x)BiFeO3-xBi0.5Na0.5TiO3 (x = 0.37) solid solution fabricated by a sol-gel method have been investigated. X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. Compared with pure BiFeO3, the coexistence of ferroelectricity and ferrimagnetism have been observed at room temperature for the solution with remnant polarization Pr = 1.41 μC/cm2 and remnant magnetization Mr = 0.054 emu/g. Importantly, a magnetic transition from ferrimagnetic (FM) ordering to paramagnetic (PM) state is observed, with Curie temperature TC ∼ 330 K, being explained in terms of the suppression of cycloid spin configuration by the structural distortion.  相似文献   

13.
The structure, dielectric properties and phase transition of lithium and potassium modified Bi0.5Na0.5TiO3 ceramics were investigated widely. The phase transition behavior with respect to changes in composition and temperature was investigated using X-ray diffraction analysis, dielectric and ferroelectric characterizations. The experimental results show that there is a diffusion phase transition in (Na1−xKx)0.5Bi0.5TiO3 ceramics at Tm and the diffuseness of the phase transition is more obvious for the samples near the morphotropic phase boundary. In (Na1−xLix)0.5Bi0.5TiO3 system, due to the space charge polarization induced by ions conductivity, the low frequency permittivity increases so remarkably at high temperature that the peak of maximum permittivity vanishes. The hysteresis loops at different temperatures indicate that there is no existence of anti-ferroelectrics in lithium and potassium modified Bi0.5Na0.5TiO3 ceramics above the depolarization temperature Td. The depolarization reason is that the tetragonal nonpolar phase occurs and leads to the macro-micro domain transformation at about Td.  相似文献   

14.
The microwave dielectric properties and microstructures of (1 − x)La(Mg0.5Ti0.5)O3-x(Ca0.8Sr0.2)TiO3 ceramics, prepared by a mixed oxide route, have been investigated. The forming of solid solutions was confirmed by the XRD patterns and the measured lattice parameters for all compositions. A near zero τf was achieved for samples with x = 0.5, although the dielectric properties varied with sintering temperature. The Q × f value of 0.5La(Mg0.5Ti0.5)O3-0.5(Ca0.8Sr0.2)TiO3 increased up to 1475 °C, after which it decreased. The decrease in dielectric properties was coincident with the onset of rapid grain growth. The optimum combination of microwave dielectric properties was achieved at 1475 °C for samples where x = 0.5 with a dielectric constant ?r of 47.12, a Q × f value of 35,000 GHz (measured at 6.2 GHz) and a τf value of −4.7 ppm/°C.  相似文献   

15.
The crystal structures, phase compositions and the microwave dielectric properties of the xLa(Mg1/2Ti1/2)O3-(1 − x)Ca0.8Sr0.2TiO3 composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. Doping with B2O3 (0.5 wt.%) can effectively promote the densification and the dielectric properties of xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics. It is found that xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics can be sintered at 1375 °C, due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1375 °C, 0.4Nd(Mg1/2Ti1/2)O3-0.6Ca0.6La0.8/3TiO3 ceramics with 1 wt.% B2O3 addition possesses a dielectric constant (?r) of 49, a Q × f value of 13,000 (at 8 GHz) and a temperature coefficients of resonant frequency (τf) of 1 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 20,000 GHz for x = 0.9 is achieved at the sintering temperature 1400 °C.  相似文献   

16.
(1 − x)ZnMoO4-xTiO2 (x = 0.0, 0.05, 0.158, 0.25, and 0.35) composite ceramics were synthesized by the conventional solid state reaction process. The sintering behavior, phase composition, chemical compatibility with silver, and microwave dielectric properties were investigated. All the specimens can be well densified below 950 °C. From the X-ray diffraction analysis, it indicates that the triclinic wolframite ZnMoO4 phase coexists with the tetragonal rutile TiO2 phase, and it is easy for silver to react with ZnMoO4 to form Ag2Zn2(MoO4)3 phase and hard to react with TiO2. When the volume fraction of TiO2 (x value) increasing from 0 to 0.35, the microwave dielectric permittivity of the (1 − x)ZnMoO4-xTiO2 composite ceramics increases from 8.0 to 25.2, the Qf value changes in the range of 32,300-43,300 GHz, and the temperature coefficient τf value varies from −128.9 to 157.4 ppm/°C. At x = 0.158, the mixture exhibits good microwave dielectric properties with a ?r = 13.9, a Qf = 40,400 GHz, and a τf = +2.0 ppm/°C.  相似文献   

17.
Plate-like NaNbO3 (NN) particles were used as the raw material to fabricate (1 − x)[0.93 K0.48Na0.52Nb O3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 lead-free piezoelectric ceramics using a conventional ceramic process. The effects of NN on the crystal structure and piezoelectric properties of the ceramics were investigated. The results of X-ray diffraction suggest that the perovskite phase coexists with the K3Li2Nb5O15 phase, and the tilting of the oxygen octahedron is probably responsible for the evolution of the tungsten-bronze-typed K3Li2Nb5O15 phase. The Curie temperature (TC) is shifted to lower temperature with increasing NN content. (1 − x)[0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 ceramics show obvious dielectric relaxor characteristics for x > 0.03, and the relaxor behavior of ceramics is strengthened by increasing NN content. Both the electromechanical coupling factor (kp) and the piezoelectric constant (d33) decrease with increasing amounts of NN. 0.01-0.03 mol of plate-like NaNbO3 in 0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3 gives the optimum content for preparing textured ceramics by the RTGG method.  相似文献   

18.
The phase evolution, crystal structure and dielectric properties of (1 − x)Nd(Zn0.5Ti0.5)O3 + xBi(Zn0.5Ti0.5)O3 compound ceramics (0 ≤ x ≤ 1.0, abbreviated as (1 − x)NZT-xBZT hereafter) were investigated. A pure perovskite phase was formed in the composition range of 0 ≤ x ≤ 0.05. The B-site Zn2+/Ti4+ 1:1 long range ordering (LRO) structure was detected by both XRD and Raman spectra in x ≤ 0.05 samples. However, this LRO structure became gradually degraded with an increase in x. The dielectric behaviors of the compound ceramic at various frequencies were investigated and correlated to its chemical composition and crystal structure. A gradually compensated τf value was obtained in (1 − x)NZT-xBZT microwave dielectrics at x = 0.03, which was mainly due to the dilution of dielectric constant in terms of Claussius-Mossotti differential equation.  相似文献   

19.
Polycrystalline samples of BaFe0.5Nb0.5O3 and (1 − x)Ba(Fe0.5Nb0.5)O3-xSrTiO3 [referred as BFN and BFN-ST respectively] (x = 0.00, 0.15 and 0.20) have been synthesized by a high-temperature solid-state reaction technique. The XRD patterns of the BFN and BFN-ST at room temperature show a monoclinic phase. The microstructure of the ceramics was examined by the scanning electron microscopy (SEM) and shows the polycrystalline nature of the samples with different grain sizes, which are inhomogeneously distributed through the sample surface. Detailed studies of dielectric and impedance properties of the materials in a wide range of frequency (100 Hz-5 MHz) and temperatures (30-270 °C) showed that properties are strongly temperature and frequency dependent. Complex Argand plane plot of ?″ against ?′, usually called Cole-Cole plots is used to check the polydispersive nature of relaxation phenomena in above mentioned compounds. Relaxation phenomena of non-Debye type have been observed in the BFN and BFN-ST ceramics, as confirmed by the Cole-Cole plots.  相似文献   

20.
Ceramic samples of xBi(Al0.5Fe0.5)O3-(1 − x)PbTiO3 (BAF-PT, x = 0.05-0.5) solid solutions were fabricated using the conventional solid state reaction method. X-ray diffraction analysis revealed that all compositions can form single perovskite phase with tetragonal symmetry. The relationship between the tetragonal lattice parameters, tetragonality c/a, cell volume, and ferro-piezoelectric characterization as a function of x was systematically investigated. The BAF modification can effectively improve the poling condition at a proper BAF content. A combination of piezoelectric constant of d33 (50-60 pC/N), electromechanical planar coupling coefficients of kp (20.3-22.5%), and high Curie temperature Tc (>478 °C) suggested that BAF-PT could be a good candidate for high-temperature piezoelectric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号