首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fusarium mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T-2 frequently contaminate grain crops in Middle and Eastern Europe. In this survey, 116 cereal samples (maize, wheat, barley and oat) were examined for DON, ZEN and T-2 mycotoxins. Samples were collected from different areas in two Hungarian regions (North and South Transdanubia). The method of analysis was indirect competitive ELISA. Maize was the most contaminated grain regarding DON (86%), ZEN (41%) and T-2 (55%) toxins. The average results of the deoxynivalenol and zearalenone tests of maize proved to be significantly higher than those of barley or oat. DON was the most represented Fusarium mycotoxin followed by T-2 and ZEN. The examination of these mycotoxins would be necessary at a larger scale as to re-evaluate permissible levels, so increase of the monitoring programme would be advisable for the future.  相似文献   

2.
In view of the frequent occurrence of mycotoxins in cereals, a study was initiated to assess the exposure of the Hungarian adult population. Consumption data for 1360 individuals, based on a 3-day questionnaire, indicated that white bread accounted for the major intake of cereal-based products. Various cereal products were analysed for 16 mycotoxins by a LC/MS/MS multi-toxin method with LOD of 16 μg kg?1 and LOQ of 50 μg kg?1. Deoxynivalenol (DON) was most frequently detected, but no acetyl-deoxynivalenol was present in detectable concentrations. Consumer exposure was calculated with standard Monte Carlo probabilistic modelling and point estimates, taking into account bread consumption and DON contamination in independently taken wheat flour and wheat grain samples. Over 55% of cases the DON intake were below 15% of the provisional maximum tolerable daily intake (PMTDI) of 1 μg/(kg bw)/day. However, in 5-15% of cases, the intake from bread consumption alone exceeded the PMTDI. Wheat grain data led to the higher percentage. Intakes estimated from both data sets were at or below the acute reference dose (ARfD) of 8 μg/(kg bw)/day in 99.94-99.97% of cases.  相似文献   

3.
Fusarium genera can produce trichothecenes like deoxynivalenol (DON), zearalenone (ZEN) and T-2 toxin, which can occur in feed cereal grains. Enzyme-linked immunosorbent assays (ELISA) tests of different Hungarian swine feedstuff proved that these mycotoxins were present. In this survey, 45 feed samples from 3 significant Hungarian swine feedstuff manufacturers were tested. ELISA methodology validation showed mean recovery rates in ranges from 85.3% to 98.1%, with intermediate precision of 86.9-96.9% and variation coefficients of 3.4–5.7% and 5.9–7.1%, respectively. The results showed that among Fusarium toxins, generally DON was present in the highest concentration, followed by T-2 and finally ZEN in all tested swine feeds. Each of the mycotoxins was found above the limit of detection in all swine feedstuffs. Boars feed’s DON (average ± standard deviation was 872 ± 139 µg kg?1) and ZEN (172 ± 18 µg kg?1) results of one of the manufacturers were above the guidance values. It indicates the necessity for efficient monitoring of DON, ZEN and T-2 mycotoxins in swine feeds.  相似文献   

4.
A total of 602 samples of cereals, consisting of organically and conventionally produced barley, oats and wheat, were collected at harvest during 2002–2004 in Norway. Organic and conventional cereals were sampled in comparable numbers regarding cereal species, localisation and harvest time, and analysed for Fusarium mould and mycotoxins. Fusarium infestation and mycotoxin content were dependent on cereal species and varied year-by-year. However, in all cereal species, Fusarium infestation and levels of important mycotoxins were significantly lower when grown organically than conventionally. Concerning the most toxic trichothecenes, HT-2 and T-2 toxin, lower concentrations were found in organic oats and barley. Wheat was not contaminated by HT-2 and T-2, but lower concentrations of deoxynivalenol (DON) and moniliformin (MON) were found when organically produced. For mycotoxins considered to constitute the main risk to humans and animals in Norwegian cereals, i.e. HT-2 in oats and DON in oats and wheat, the median figures (mean levels in brackets) were as follows: HT-2 in organic and conventional oats were <20 (80) and 62 (117) µg/kg, DON in organic and conventional oats were 24 (114) and 36 (426) µg/kg, and DON in organic and conventional wheat were 29 (86) and 51 (170) µg/kg, respectively. Concentrations of HT-2 and T-2 in the samples were strongly correlated (r = 0.94). Other mycotoxins did not show a significant correlation to each other. Both HT-2 and T-2 concentrations were significantly correlated with infestation of F. langsethiae (r = 0.65 and r = 0.60, respectively). Concentrations of DON were significantly correlated with F. graminearum infestation (r = 0.61). Furthermore, nivalenol (NIV) was significantly correlated with infestation of F. poae (r = 0.55) and MON with F. avenaceum (r = 0.37). As lower Fusarium infestation and mycotoxin levels were found in organic cereals, factors related to agricultural practice may reduce the risk of contamination with Fusarium mycotoxins. Studies of these issues will be presented separately.  相似文献   

5.
Each year (2001–2005), 300 samples of wheat from fields of known agronomy were analysed for ten trichothecenes by gas chromatography-mass spectrometry (GC/MS) including deoxynivalenol (DON), nivalenol, 3-acetyl-DON, 15-acetyl-DON, fusarenone X, T2 toxin, HT2 toxin, diacetoxyscirpenol, neosolaniol and T-2 triol and zearalenone by high-performance liquid chromatography (HPLC). Of the eleven mycotoxins analysed from 1624 harvest samples of wheat, only eight were detected, and of these only five–deoxynivalenol, 15-acetyl-DON, nivalenol, HT-2 and zearalenone–were detected above 100 µg kg?1. DON was the most frequently detected Fusarium mycotoxin, present above the limit of quantification (10 µg kg?1) in 86% of samples, and was usually present at the highest concentration. The percentage of samples that would have exceeded the recently introduced legal limits varied between 0.4% and 11.3% over the five-year period. There was a good correlation between DON and zearalenone concentrations, although the relative concentration of DON and zearalenone fluctuated between years. Year and region had a significant effect on all mycotoxins analysed. There was no significant difference in the DON concentration of organic and conventional samples. There was also no significant difference in the concentration of zearalenone between organic and conventional samples, however organic samples did have a significantly lower concentration of HT2 and T2. Overall, the risk of UK wheat exceeding the newly introduced legal limits for Fusarium mycotoxins in cereals intended for human consumption is low, but the percentage of samples above these limits will fluctuate between years.  相似文献   

6.
Monitoring results of food grain contamination with fusariotoxins–deoxynivalenol (DON), zearalenone (ZEN), fumonisins (FB1&FB2), T-2 and HT-2 toxins–are presented. Harvests of 2005–2010 in different regions of Russia were investigated. The occurrence of DON in wheat was 8%, barley 9%, oats 4%, rye 2% and maize 2%. The highest frequency of ZEN contamination was found in oats, the lowest in wheat. Calculated average daily intake of DON varied from 0.066 to 0.096 µg/kg body weight, the highest being found in the Southern region, but substantially lower than the provisional maximum tolerable daily intake. The results of enzyme-linked immunosorbent assay and high-performance liquid chromatography–mass spectrometry analysis demonstrated the presence of T-2 toxin in 14% and HT-2 toxin in 17% of all samples. The maximum level of T-2 toxin was exceeded only in one sample of barley. Relatively high frequency and levels of FB1&FB2 contamination were found in maize.  相似文献   

7.
Information on the contamination of Danish cereals and cereal products with Fusarium toxins is limited and the last survey is from 1984/1985. In the present study, the occurrence of deoxynivalenol (DON), nivalenol (NIV), HT-2 toxin, T-2 toxin and zearalenone (ZON) was investigated in flour of common wheat, durum wheat and rye. The samples were collected from 1998 to 2001 from both mills and the retail market in Denmark. A total of 190 flour samples were analysed for DON and NIV and about 60 samples for HT-2, T-2 toxin and ZON. DON was most frequently detected with an incidence rate of 78% over all samples for all years. The contamination level varied considerably from year to year, and for wheat and rye the highest incidence and DON concentrations were found in samples from the 1998 harvest. There were regular and heavy rainfalls in Denmark during the flowering period of the crops that year, and DON was found in all samples, with mean concentrations in wheat and rye flour of 191 μg kg-1 (n =14) and 99 μg kg-1 (n =16), respectively. Comparison of data from each harvest year showed higher contents of DON in samples of wheat (range 20-527 μg kg-1) than in rye (20-257 μg kg-1). Contents of NIV, HT-2 toxin and ZON in samples of wheat and rye were generally low, and even in positive samples the contents were close to the detection limit of the methods. The T-2 toxin was detected in only a few of the wheat samples and in low amounts. However, the toxin was found in about 50% of the rye samples collected during 1998-2000, with a mean content of 49 μg kg-1 (n =25). Durum wheat flour showed the highest DON contamination level, and all samples (n =33) collected during 2000 and 2001 contained DON with means and medians above 1100 μg kg-1. Over 70% of the samples contained more than 500 μg kg-1 DON, and the highest observed concentration was 2591 μg kg-1. The concentration of T-2 toxin in durum wheat flour was also high with five of the 10 analysed samples containing more than 100 g kg-1.  相似文献   

8.
Bavarian cereals and wheat flour from the 1987 harvest were analysed for nivalenol (NIV) and deoxynivalenol (DON) using high performance liquid chromatography (HPLC) and for T-2 toxin and zearalenone (ZEA) by enzyme-linked-immunosorbent assay (ELISA). The study included 190 field samples of wheat, barley, rye and oat with visibly damaged ears, 45 samples of wheat intended for feed production and two series of wheat flour (type 550) and whole wheat flour collected in October 1987 and June 1988. The field samples examined showed a high DON contamination of wheat (87%) with an average of 3.96 mg/kg and a maximum of 43.8 mg/kg. Mean levels between 0.33 mg/kg and 0.27 mg/kg DON could be detected in barley, rye and oat. Of the wheat samples, 58% contained ZEA with a maximum of 1.560 mg/kg. The highest levels of ZEA were detected in samples which also showed high concentrations of DON. The NIV and T-2 toxin levels were comparatively low. Thirty percent of the samples showed NIV concentrations between 0.04 mg/kg and 0.29 mg/kg and 38% contained between 0.005 and 0.60 mg/kg of T-2. In the wheat samples for feed production, only DON was detected with an average of 0.190 mg/kg and a maximum of 0.75 mg/kg. The highest DON levels (0.58 mg/kg) from October 1987 were found in the wheat flour samples which were lower than the highest DON concentration (3.24 mg/kg) detected in the samples collected during June 1988. This fact was probably due to a substantial amount of non-contaminated wheat from 1986. The toxin concentrations in the whole wheat flour were not higher than in the type 550 flour.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of oxidizing (potassium bromate and L-ascorbic acid) and reducing (sodium bisulfite and L-cysteine) agents, and ammonium phosphate, at varying levels, on deoxynivalenol (DON; vomitoxin: 3,7,15-trihydroxy-12,13-epoxytrichothec-9 en-8 one) in whole wheat flour were investigated during breadbaking. Baking of flour containing 3.13 μg/g DON brought about 7.0% toxin reduction in bread. Sodium bisulfite (25 and 50 μg/g) L-cysteine (10, 40, and 90 μg/g and ammonium phosphate (1,000 μg/g) were moderately effective in reducing DON level in bread (38.0 to 46.0%). Potassium bromate (25 and 75 μg/g) and L-ascorbic acid (50 μg/g) had no effect.  相似文献   

10.
Organic farming does not allow the use of conventional mineral fertilizers and crop protection products. As a result, in our experiments we chose to grow different species of cereals and to see how cereal species affect mycotoxin accumulation. This study describes the occurrence of deoxynivalenol (DON), zearalenone (ZEA) and T-2/HT-2 toxin in a survey of spelt and common wheat and their bran as well as flour. The analysis was conducted using an enzyme-linked immunosorbent assay (ELISA) method. The concentrations of DON, ZEA and T-2/HT-2 in Triticum spelta and T. aestivum were influenced by species, cereal type and year interaction. The highest concentrations of these mycotoxins were found in spelt grain with glumes, in spelt glumes and in spring wheat. These results show significantly higher concentrations of Fusarium toxins in glumes than in dehulled grain, which indicates the possible protective effect of spelt wheat glumes. The lowest DON, ZEA and T-2/HT-2 concentrations were determined in spelt grain without glumes. The research shows that it is potentially risky to produce bran from grain in which mycotoxin concentrations are below limits by European Union Regulation No. 1881/2006, since the concentration of mycotoxins in bran can be several times higher than that in grain. As a result, although bran is a dietary product characterised by good digestive properties, it can become a harmful product that can cause unpredictable health damage.  相似文献   

11.
12.
Wheat grain contamination with toxigenic Fusarium spp. is of great economic concern to cereal producers and to the grain processing industry and is of great relevance for the quality and safety of the final products. In particular, the bread production chain can potentially be a vehicle for mycotoxin ingestion above the tolerable total daily intake. A quantitative polymerase chain reaction‐based analytical approach has been developed as a possible tool to estimate and control the risk of mycotoxins, particularly deoxynivalenol (DON). This DNA‐based analytical method has been applied to detect and quantify contamination levels of Fusarium graminearum and Fusarium culmorum in naturally infected wheat grain samples. The persistence of Fusarium contamination was also detected along the bread production chain in wholemeal, flour and bread. A significant correlation was found between Fusarium DNA and DON concentration in all samples.  相似文献   

13.
In view of the frequent occurrence of mycotoxins in cereals, a study was initiated to assess the exposure of the Hungarian adult population. Consumption data for 1360 individuals, based on a 3-day questionnaire, indicated that white bread accounted for the major intake of cereal-based products. Various cereal products were analysed for 16 mycotoxins by a LC/MS/MS multi-toxin method with LOD of 16?µg?kg?1 and LOQ of 50?µg?kg?1. Deoxynivalenol (DON) was most frequently detected, but no acetyl-deoxynivalenol was present in detectable concentrations. Consumer exposure was calculated with standard Monte Carlo probabilistic modelling and point estimates, taking into account bread consumption and DON contamination in independently taken wheat flour and wheat grain samples. Over 55% of cases the DON intake were below 15% of the provisional maximum tolerable daily intake (PMTDI) of 1?µg/(kg?bw)/day. However, in 5–15% of cases, the intake from bread consumption alone exceeded the PMTDI. Wheat grain data led to the higher percentage. Intakes estimated from both data sets were at or below the acute reference dose (ARfD) of 8?µg/(kg?bw)/day in 99.94–99.97% of cases.  相似文献   

14.
Each year (2002–2005), approximately 100 samples of barley from fields of known agronomy were analysed for ten trichothecenes by gas chromatography-mass spectrometry (GC/MS) including deoxynivalenol (DON), nivalenol, 3-acetyl DON, 15-acetyl DON, fusarenone X, T-2 toxin (T2), HT-2 toxin (HT2), diacetoxyscirpenol, neosolaniol, and T-2 triol. Samples were also analysed for moniliformin and zearalenone by high-performance liquid chromatography (HPLC). Of the ten trichothecenes analysed from 446 harvest samples of barley, only two, diacetoxyscirpenol and neosolaniol, were not detected. The concentrations of type A trichothecenes were similar to those that occurred in wheat over the same period, whilst those of type B trichothecenes were markedly lower. Deoxynivalenol was the most frequently detected Fusarium mycotoxin, present above the limit of quantification (10 µg kg?1) in 57% of samples, and was usually present at the highest concentration. A single sample (0.2%) exceeded the legal limit for DON in unprocessed barley over the 4-year period. Moniliformin and zearalenone were both rarely detected (2% of samples greater than 10 µg kg?1 for both toxins) with maximum concentrations of 45 and 44 µg kg?1, respectively. Year and region had a significant effect on DON and HT2 + T2, but there was no significant difference in the concentration of these mycotoxins between organic and conventional samples. Overall, the risk of UK barley exceeding the newly introduced legal limits for Fusarium mycotoxins in cereals intended for human consumption is very low, but the percentage of samples above these limits will fluctuate between years.  相似文献   

15.
Most recent information on the occurrence of Fusarium Head Blight species and related mycotoxins in wheat grown in the Netherlands dates from 2001. This aim of this study was to investigate the incidence and levels of Fusarium Head Blight species and Fusarium mycotoxins, as well as their possible relationships, in winter wheat cultivated in the Netherlands in 2009. Samples were collected from individual fields of 88 commercial wheat growers. Samples were collected at harvest from 86 fields, and 2 weeks before the expected harvest date from 21 fields. In all, 128 samples, the levels of each of seven Fusarium Head Blight species and of 12 related mycotoxins were quantified. The results showed that F. graminearum was the most frequently observed species at harvest, followed by F. avenaceum and M. nivale. In the pre-harvest samples, only F. graminearum and M. nivale were relevant. The highest incidence and concentrations of mycotoxins were found for deoxynivalenol, followed by zearalenone and beauvericin, both pre-harvest and at harvest. Other toxins frequently found – for the first time in the Netherlands – included T-2 toxin, HT-2 toxin, and moniliformin. The levels of deoxynivalenol were positively related to F. graminearum levels, as well as to zearalenone levels. Other relationships could not be established. The current approach taken in collecting wheat samples and quantifying the presence of Fusarium Head Blight species and related mycotoxins is an efficient method to obtain insight into the occurrence of these species and toxins in wheat grown under natural environmental conditions. It is recommended that this survey be repeated for several years to establish inter-annual variability in both species composition and mycotoxin occurrence.  相似文献   

16.
The fate of five Fusarium toxins — deoxynivalenol (DON), sum of 15- and 3-acetyl-deoxynivalenol (ADONs), HT-2 toxin (HT-2) representing the main trichothecenes and zearalenone (ZON) during the malting and brewing processes — was investigated. In addition to these ‘free’ mycotoxins, the occurrence of deoxynivalenol-3-glucoside (DON-3-Glc) was monitored for the first time in a beer production chain (currently, only DON and ZON are regulated). Two batches of barley, naturally infected and artificially inoculated with Fusarium spp. during the time of flowering, were used as a raw material for processing experiments. A highly sensitive procedure employing high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was validated for the analysis of ‘free’ Fusarium mycotoxins and DON-conjugate in all types of matrices. The method was also able to detect nivalenol (NIV), fusarenon-X (FUS-X) and T-2 toxin (T-2); nevertheless, none of these toxins was found in any of the samples. While steeping of barley grains (the first step in the malting process) apparently reduced Fusarium mycotoxin levels to below their quantification limits (5–10 µg kg?1), their successive accumulation occurred during germination. In malt, the content of monitored mycotoxins was higher compared with the original barley. The most significant increase was found for DON-3-Glc. During the brewing process, significant further increases in levels occurred. Concentrations of this ‘masked’ DON in final beers exceeded ‘free’ DON, while in malt grists this trichothecene was the most abundant, with the DON/DON-3-Glc ratio being approximately 5:1 in both sample series. When calculating mass balance, no significant changes were observed during brewing for ADONs. The content of DON and ZON slightly decreased by a maximum of 30%. Only traces of HT-2 were detected in some processing intermediates (wort after trub removal and green beer).  相似文献   

17.
A total of 57 samples of corn and corn‐based products collected from various districts of Egypt were analyzed for Fusarium mycotoxins (T‐2, diacetoxyscripenol (DAS( deoxynivalenol (DON) and fumonisin B1 (FB1) and aflatoxins. FB1 was detected in about 80%, 53.85%, 33.3%, and 28.57% of yellow corn, corn meal, white corn, and popcorn samples, respectively. The levels of FB1 ranged from 10 to 780 μg/kg. T‐2 and DAS were detected in 5% and 10% of yellow corn samples, respectively, and DON was detected in white corn and popcorn samples at levels of 28.8 and 10.1 μg/kg, respectively. Starch samples were found to be free from Fusarium mycotoxins. Baking balady bread at 450°C/min reduced FB1 to 72.4% while baking Franco bread at 250°C/20 min reduced FB1 to 57.4%. Boiling of macaroni and corn in water completely removed FB1 from contaminated samples. On the other side, corn flakes samples were found to be contaminated with aflatoxins B1 and G1 at levels ranging from 6 to 10 ppm, whereas 2.9% of samples were contaminated with aflatoxin B1 > 35 ppm and G1 > 16 ppm.  相似文献   

18.
Summary Bavarian cereals and wheat flour from the 1987 harvest were analysed for nivalenol (NIV) and deoxynivalenol (DON) using high performance liquid chromatography (HPLC) and for T-2 toxin and zearalenone (ZEA) by enzyme-linked-immunosorbent as say (ELISA). The study included 190 field samples of wheat, barley, rye and oat with visibly damaged ears, 45 samples of wheat intended for feed production and two series of wheat flour (type 550) and whole wheat flour collected in October 1987 and June 1988. The field samples examined showed a high DON contamination of wheat (87%) with an average of 3.96 mg/kg and a maximum of 43.8 mg/kg. Mean levels between 0.33 mg/kg and 0.27 mg/kg DON could be detected in barley, rye and oat. Of the wheat samples, 58% contained ZEA with a maximum of 1.560 mg/kg. The highest levels of ZEA were detected in samples which also showed high concentrations of DON. The NIV and T-2 toxin levels were comparatively low. Thirty percent of the samples showed NIV concentrations between 0.04 mg/kg and 0.29 mg/kg and 38% contained between 0.005 and 0.60 mg/kg of T-2. In the wheat samples for feed production, only DON was detected with an average of 0.190 mg/kg and a maximum of 0.75 mg/kg. The highest DON levels (0.58 mg/kg) from October 1987 were found in the wheat flour samples which were lower than the highest DON concentration (3.24 mg/kg) detected in the samples collected during June 1988. This fact was probably due to a substantial amount of non-contaminated wheat from 1986. The toxin concentrations in the whole wheat flour were not higher than in the type 550 flour. The regional distribution of the mean DON concentrations showed the highest levels in Middle and Lower-Franconia.
Vorkommen von Fusarium Mykotoxinen in bayerischem Getreide der Ernte 1987
Zusammenfassung Cerealien und Weizenmehle der bayerischen Ernte 1987 wurden mittels hochauflösender Flüssigchromatographie (HPLC) auf Nivalenol (NIV) und Deoxynivalenol (DON) Bowie mit Enzymimmunoassay auf T-2 Toxin und Zearalenon (ZEA) analysiert. Die Untersuchungen umfaßten 190 Feldproben von Weizen, Gerste, Roggen und Hafer, die alle optisch erkennbaren Fusarienbefall aufwiesen, 45 Futterweizenproben Bowie zwei Probenserien von Weizenmehlen der Type 550 und Vollkornweizenmehlen, die im October 1987 und im Juni 1988 gezogenwurden. — Die Untersuchungen der Feldproben ergaben eine hohe DON-Kontamination des Weizens (87%) mit einem durchschnittlichen Gehalt von 3,96 mg/kg und einem Maximalgehalt von 43,8 mg/kg. In Gerste, Roggen und Hafer konnten durchschnittlich zwischen 0,33 mg/kg und 0,27 mg/kg DON-nachgewiesen werden. 58% der Winterweizenproben wiesen Zearalenon mit einem Maximalgehalt von 1,56 mg/kg auf. Die höchsten ZEA-Werte wurden in Proben ermittelt, die gleichzeitig einen hohen DON-Gehalt aufwiesen. Die Konzentrationen von NIV und T-2 Toxin waren vergleichsweise niedrig. 30% der Proben hatten NIV-Gehalte zwischen 0,04 mg/kg und 0,29 mg/kg und 38% enthielten T-2 Toxin zwischen 0,005 mg/kg und 0,06 mg/kg. In den Futterweizenproben konnte DON als einziges Toxin mit einem Gehalt von durchschnittlich 0,19 mg/kg und maximal 0,75 mg/kg festgestellt werden. Die Weizenmehle, die im October 1987 gezogen wurden, wiesen maximal 0,58 mg/kg DON auf. Die Gehalte lagen damit medriger als die der Mehlproben vom Juni 1988, die maximal 3,24 mg/kg und durchschnittlich 0,26 mg/kg DON enthielten. Dieser Sachverhalt könnte auf Anteile von nicht kontaminiertem Weizen der Ernte 86 an den im October gezogenen Mehlproben zurückgeführt werden. Die Toxingehalte der Vollkornmehle waren nicht höher als die der Weizenmehle der Type 550. Die höchsten Durchschnittsgehalte von DON wurden in Mittel- und Unterfranken festgestellt.
  相似文献   

19.
The aim of this study was to develop a multicomponent analytical method for the determination of deoxynivalenol (DON), ochratoxin A (OTA) and zearalenone (ZEN), nivalenol (NIV), 3-acetyl-DON (3-acDON), 15-acetyl-DON (15-acDON), zearalenol (ZOL) and citrinin (CIT) in wheat. It also aimed to survey the presence and amounts of DON, OTA and ZEN in Belgian conventionally and organically produced wheat grain and in wholemeal wheat flours. After solvent extraction, an anion-exchange column (SAX) was used to fix the acidic mycotoxins (OTA, CIT), whilst the neutral mycotoxins flowing through the SAX column were further purified by filtration on a MycoSep cartridge. OTA and CIT were then analysed by high-performance liquid chromatography (HPLC) using an isocratic flow and fluorescence detection, while the neutral mycotoxins were separated by a linear gradient and detected by double-mode (ultraviolet light fluorescence) detection. The average DON, ZEN and OTA recovery rates from spiked blank wheat flour were 92, 83 and 73% (RSDR = 12, 10 and 9%), respectively. Moreover, this method offered the respective detection limits of 50, 1.5 and 0.05 microg kg-1 and good agreement with reference methods and inter-laboratory comparison exercises. Organic and conventional wheat samples harvested in 2002 and 2003 in Belgium were analysed for DON, OTA and ZEN, while wholemeal wheat flour samples were taken from Belgian retail shops and analysed for OTA and DON. Conventional wheat tended to be more frequently contaminated with DON and ZEN than organic samples, the difference being more significant for ZEN in samples harvested in 2002. The mean OTA, DON and ZEA concentrations were 0.067, 675 and 75 microg kg-1 in conventional samples against 0.063, 285 and 19 microg kg-1 in organically produced wheat in 2002, respectively. Wheat samples collected in 2003 were less affected by DON and ZEN than the 2002 harvest. Organic wholemeal wheat flours were more frequently contaminated by OTA than conventional samples (p < 0.10). The opposite pattern was shown for DON, organic samples being more frequently contaminated than conventional flours (p < 0.10).  相似文献   

20.
A limited survey for the occurrence of nivalenol (NIV), deoxynivalenol (DON) and zearalenone (ZEN) in 1984 UK-grown cereals (31 samples) have been carried out using a new procedure, which is a rapid and sensitive method for Fusarium mycotoxins. NIV, DON and ZEN were detected in 17 (55%), 20 (65%) and 4 (13%) out of 31 samples, and average levels in positive samples were 101 micrograms/kg, 31 micrograms/kg and 1 microgram/kg, respectively. Additional surveys on two wheat and eight barley samples harvested in Scotland have shown that 30%, 60% and 100% of the samples were contaminated with NIV, DON and ZEN, respectively. The contents averaged 391 micrograms/kg of NIV, 39 micrograms/kg of DON and 9 micrograms/kg of ZEN. The results of this survey show that UK-grown cereals were significantly contaminated with NIV, DON and ZEN in a similar way to that observed in Japan, Korea and China. This is the first evidence of the natural occurrence of NIV in UK cereals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号