首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nijsse J  van Aelst AC 《Scanning》1999,21(6):372-378
In the past decade, investigators of cryo-planing for low-temperature scanning electron microscopy (cryo-SEM) have developed techniques that enable observations of flat sample surfaces. This study reviews these sample preparation techniques, compares and contrasts their results, and introduces modifications that improve results from cryo-planing. A prerequisite for all successful cryo-planing required a stable attachment of the specimen to a holder. In most cases, clamping with a screw mechanism and using indium as space-filler sufficed. Once this problem was solved, any of three existing cryo-planing methods could be used to provide successful results: cryo-milling, microtomy in a cold room, and cryo-ultramicrotomy. This study introduces modifications to the cryo-planing technique that produces flat surfaces of any desired plane through a specimen. These flat surfaces of frozen, fully hydrated samples can be used to improve observations from cryo-SEM as well as to enhance results from x-ray microanalysis and (digital) image analysis. Cryo-planing results of chrysanthemum (Dendranthema x grandiflorum Tzvelev) stems, hazel (Corylus avelane L.) stems, and repeseed (Brassica napus L.) pistils are presented to illustrate the use of the planing method on fibrous, hard, and delicate materials, respectively.  相似文献   

2.
Cryo-electron microscopy of cryofixed samples is a well-established and accepted technique for imaging liquid-containing specimens without removing water and other volatile components. There are many steps between cryofixation and cryo-observation in the microscope, during which the sample and sample holder need to be handled. One such major step is the loading of the specimen onto the sample holder and the fixing of the sample holder onto the transfer mechanism. During this handling, the specimen is often exposed (mostly inadvertently) to moisture in the atmosphere, which results in frost deposition. The new specimen loader described here is designed to overcome the traditional tedious handling and to achieve ease in specimen loading. The modifications made are mainly towards allowing movement of the liquid freon cup, eliminating the need for a lock-screw and improving the shape of the stage holder, which makes the mounting of the specimen holder easy, thereby permitting smooth specimen loading without too much handling and with consequent reduced frost deposition.  相似文献   

3.
This work presents the morphologic and structural study of nanolaminated Ti/TiN multilayers using high-resolution scanning electron microscopy (HR-SEM), coupled to x-ray reflectometry (XRR). The multilayers have been deposited by reactive rf-sputtering on silicon substrates. For large period thickness (lambda=40 nm, 10 periods), in XRR, the low number of interfaces makes the interference less structured. An experimental pattern with broad and weakly intense Braggs peaks is obtained, but is difficult to simulate. On the other hand, HR-SEM observation of cross sections gives excellent pictures of the multilayer, so that precise measurements of the thickness can be achieved: a 42 nm thick period is observed, formed with 17 nm of Ti and with 25 nm of TiN. For small (Ti+TiN) period thickness (lambda=2.5 nm, 120 periods), the XRR pattern exhibits intense and narrow Bragg peaks: the number of interfaces is sufficient to structure the interference and an intense signal is obtained. The best fit of simulation is obtained for a 2.6 nm thin period, made of 0.9 nm of Ti and 1.7 nm of TiN. No laminated structure has been observed by cross-section HR-SEM observation because its resolution (around 2 nm at 10 kV) is larger than the layer thickness in a period. High-resolution SEM and XRR are thus two complementary techniques for the routine characterization of multilayers.  相似文献   

4.
Hans Ris 《Scanning》1997,19(5):368-375
The nuclear pore complex (NPC) is a large macro-molecular assembly inserted into the nuclear envelope (NE). It controls the traffic of proteins, RNA, and RNA proteins between nucleus and cytoplasm. Its chemical composition and function are now intensively investigated in many organisms. To understand this unique membrane transport system, we must know the supramolecular organization of the NPC. In recent years, high-resolution field-emission scanning electron microscopy has made important contributions to our knowledge of NPC structure. It provided the first images of the complex and beautiful fish trap-like structure of its intranuclear surface, documented in this review. It also has provided the first images of a new intranuclear structure, a system of branching hollow cables connecting the nuclear interior with the NPCs at the nuclear surface. Most likely this is an intranuclear transport system, assuring efficient exchange between the nuclear interior and the NE, especially in large nuclei.  相似文献   

5.
The techniques of reflection electron microscopy (REM) using TEM instruments and scanning reflection electron microscopy (SREM) using STEM instruments have been explored as means for the observation of surface structure with high spatial resolution, better than 1 nm in each case. Under the ordinary environment of a commercial TEM instrument, we have studied the contrast in REM images of atomic steps and made comparison with the calculated results from the multi-slice dynamical diffraction theory. Comparison has also been made between the REM images of defects and the calculated images based on the column approximation. The influence of surface resonances on the contrast has been investigated. By SREM performed in a modified HB5 STEM with attached high vacuum preparation chamber, we have observed the formation of periodically distributed Pd particles on the surface of cleaved MgO.  相似文献   

6.
Stratum corneum structure greatly differs from that of the living epidermis and specific sample cryo-preparation techniques have to be used. Practical aspects of these cryo-techniques applied to stratum corneum are discussed. Emphasis is placed on scanning electron microscopy of cryo-fixed samples. A new sample holder designed for cryo-scanning electron microscopy of freeze-fractured stratum corneum is described.  相似文献   

7.
Visualization and analysis of structural features in fossil dinosaur eggs by scanning electron microscopy augment information from traditional petrographic light microscopy. Comparison of characteristics in fossil and modern eggshells allows inferences to be made regarding dinosaur reproductive biology, physiology, and evolutionary relationships. Assessment of diagenetic alteration of primary eggshell calcite structure that occurs during fossilization provides important information necessary for taxonomic identification and paleoenvironmental interpretations.  相似文献   

8.
Cell biologists probing the physiologic movement of macromolecules and solutes across the fenestrated microvascular endothelial cell have used electron microscopy to locate the postulated pore within the fenestrae. Prior to the advent of in-lens field-emission high-resolution scanning electron microscopy (HRSEM) and ultrathin m et al coating technology, quick-freeze, platinum-carbon replica and grazing thin-section transmission electron microscopy (TEM) methods provided two-dimensional or indirect imaging methods. Wedge-shaped octagonal channels composed of fibrils interwoven in a central mesh were depicted as the filtering structures of fenestral diaphragms in images of platinum replicas enhanced by photographic augmentation. However, image accuracy was limited to replication of the cell surface. Subsequent to this, HRSEM technology was developed and provided a high-fidelity, three-dimensional topographic image of the fenestral surface directly from a fixed and dried bulk adrenal specimen coated with a 1 nm chromium film. First described from TEM replicas, the “flower-like” structure comprising the fenestral pores was readily visualized by HRSEM. High-resolution images contained particulate ectodomains on the lumenal surface of the endothelial cell membrane. Particles arranged in a rough octagonal shape formed the fenestral rim. Digital acquisition of analog photographic recordings revealed a filamentous meshwork in the diaphragm, thus confirming and extending observations from replica and grazing section TEM preparations. Endothelial cell pockets, first described in murine renal peritubular capillaries, were observed in rhesus and rabbit adrenocortical capillaries. This report features recent observations of fenestral diaphragms and endothelial pockets fitted with multiple diaphragms utilizing a Schottky field-emission electron microscope. In-lens staging of bulk and thin section specimens allowed tandem imaging in HRSEM and scanning TEM modes at 25 kV.  相似文献   

9.
The aim of this work was to assess the changes in the microstructure of hot‐deformed specimens made of alloys containing 46–50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 °C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.  相似文献   

10.
Inner surfaces and fracture faces of rabbit kidney tissue were investigated with high-resolution scanning electron microscopy using two different cryopreparation techniques: (i) for the observation of fracture faces, cryofixed tissue was fractured and coated in a cryopreparation chamber dedicated to SEM, vacuum transferred onto a cold stage and observed in the frozen-hydrated state; (ii) for the observation of inner surfaces of the nephron, water was removed after freezing and fracturing by freeze substitution and critical-point drying of the tissue. By both methods, macromolecular structures such as intramembranous particles on fracture faces and particles on inner surfaces were imaged. The latter method was used to investigate in more detail surface structures of cells in the cortical collecting duct. These studies revealed a heterogeneity of intercalated cells not described thus far.  相似文献   

11.
A consortium of microorganisms with the capacity to degrade crude oil has been characterized by means of confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The analysis using CLSM shows that Microcoleus chthonoplastes is the dominant organism in the consortium. This cyanobacterium forms long filaments that group together in bundles inside a mucopolysaccharide sheath. Scanning electron microscopy and transmission electron microscopy have allowed us to demonstrate that this cyanobacterium forms a consortium primarily with three morphotypes of the heterotrophic microorganisms found in the Microcoleus chthonoplastes sheath. The optimal growth of Microcoleus consortium was obtained in presence of light and crude oil, and under anaerobic conditions. When grown in agar plate, only one type of colony (green and filamentous) was observed.  相似文献   

12.
13.
A novel secondary electron detection system combining a two‐stage detector head and a differential pumping system is presented. The detector head consisted of a scintillation Everhart‐Thornley detector and a microsphere plate, separating it from the lower vacuum in the intermediate chamber (below 0.1 mbar). The system was arranged asymmetrically, which should contribute to a lower gas leakage through the plate and a longer life span of the plate. The system offered all the advantages of the scintillator detector in a wide range of gas pressures, from high vacuum to those of the order of 10 mbar, typical of high‐pressure scanning electron microscopy.  相似文献   

14.
This study has investigated the potential of environmental electron microscopy techniques for studying the structure of polymer‐based electronic devices. Polymer blend systems composed of F8BT and PFB were examined. Excellent contrast, both topographical and compositional, can be achieved using both conventional environmental scanning electron microscopy (ESEM) and a transmission detector giving an environmental scanning transmission electron microscope (ESTEM) configuration. Controllable charging effects present in the ESEM were observed, giving rise to a novel voltage contrast. This shows the potential of such contrast to provide excellent images of phase structure and charge distributions.  相似文献   

15.
16.
Actin filaments and microtubules, both in situ and in vitro, were imaged using high-resolution scanning electron microscopy (HRSEM) at low temperature. For visualization of cytoskeletal elements in situ, fibroblasts were first extracted and fixed; for cytoskeletal elements in vitro, purified proteins were polymerized and fixed. Both types of specimen were then subjected to plunge freezing, controlled freeze-drying, cryo-sputter coating with a thin chromium layer, cryo- transferring and cryo-observation in an FESEM. The three-dimensional architecture of the cytoskeleton was well preserved, permitting examination of the structural relationships among cytoskeletal elements. Actin filaments and microtubules were identified by their characteristic helical features. Two periodicities of actin filaments, the short pitch of the left-handed helix measured at 5·5 nm and the 37-nm-long pitch helix, were revealed. Individual protofilaments were seen in microtubules as well as the characteristic 4-nm repeat of tubulin subunits along the protofilament. Clathrin cages were also observed. This technique provides a powerful approach for direct imaging of macromolecular structures with high contrast and high signal-to-noise ratio at a resolution of 2–3 nm.  相似文献   

17.
Case studies will be presented in which environmental scanning electron microscopy (ESEM) has been used to provide unique insight into the role of microorganisms in deterioration processes. ESEM is an excellent tool for demonstrating spatial relationships between microorganisms and substrata because hydrated, nonconducting samples can be viewed with a minimum of manipulation. Copper and iron-rich deposits associated with bacteria were detected within corrosion layers on copper and steel surfaces, respectively. Fungal mycelia growing on wooden storage spools were shown to penetrate protective grease on carbon steel wire rope in contact with the spool and to cause localized corrosion. Large numbers of marine bacteria were documented within paint blisters and disbonded regions of fiber-reinforced polymeric composites. In both cases, it appears that microbial gas production resulted in mechanical damage to the substrata.  相似文献   

18.
Li HM  Ding ZJ 《Scanning》2005,27(5):254-267
A new Monte Carlo technique for the simulation of secondary electron (SE) and backscattered electron (BSE) of scanning electron microscopy (SEM) images for an inhomogeneous specimen with a complex geometric structure has been developed. The simulation is based on structure construction modeling with simple geometric structures, as well as on the ray-tracing technique for correction of electron flight-step-length sampling when an electron trajectory crosses the interface of the inhomogeneous structures. This correction is important for the simulation of nanoscale structures of a size comparable with or even less than the electron scattering mean free paths. The physical model for electron transport in solids combines the use of the Mott cross section for electron elastic scattering and a dielectric function approach for electron inelastic scattering, and the cascade SE production is also included.  相似文献   

19.
20.
The feasibility of plasma coating of a thin osmium layer for high‐resolution immuno‐scanning electron microscopy of cell surfaces was tested, using Drosophila embryonic motor neurones as a model system. The neuro‐muscular preparations were fixed with formaldehyde and labelled with a neurone‐specific antibody and 10 or 5 nm colloidal gold‐conjugated secondary antibodies. The specimens were post‐fixed with osmium tetroxide and freeze‐dried. Then they were coated with a 1–2 nm thick layer of osmium using a hollow cathode plasma coater. The thin and continuous coating of amorphous osmium gave good signals of gold particles and fine surface structures of neurites in backscattered electron images simultaneously. This method makes it possible to visualize the antigen distribution and the three‐dimensionally complex surface structures of cellular processes with a resolution of several nanometres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号