首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《钢铁冶炼》2013,40(5):398-406
Abstract

Physical modelling using water in a one-third scale model was carried out to ascertain the influence of various types of baffles with inclined holes on the liquid flow in a six strand round bloom continuous casting tundish. To characterise the flow in the tundish, residence time distribution (RTD) curves were measured for different types of baffles with inclined holes. Because there is no well known analysis model to characterise the melt flow in multistrand tundishes, a new model was presented to analyse RTD curves and its reasonability was discussed. Furthermore, a new approach for quantifying the similarity among the strands was proposed and the baffle was optimised to improve the inclusion floatation and strand similarity in the tundish.  相似文献   

2.
To assess and quantify the relative importance of Reynolds and Froude numbers in reduced scale model studies (these cannot be simultaneously respected when the scale factor is less than unity), aqueous model investigations were carried out on three different laboratory scale tundish models. The experimental tundish systems included two strand, five strand skewed delta shaped and six strand rectangular shaped vessels. Experimental observations show that the depth of liquid in the model would only correspond to that in the full scale system, provided the model flow rate is scaled in accordance with the relationship: Qm = λ5/2 Qf.S, in which, A is the geometrical scaling factor. Furthermore, on the basis of residence time distribution measurements in two different configurations of the five strand tundish, it was demonstrated explicitly that flow phenomena in tundish systems are largely dominated by inertial forces and are therefore, essentially Froude dominated.  相似文献   

3.
《钢铁冶炼》2013,40(3):159-166
Abstract

In the continuous casting process, the tundish acts as a continuous molten steel distribution vessel. The importance of the tundish during the molten steel delivery becomes more significant when it supplies liquid steel to more than one mould. In the present work, a water model of a six strand billet caster tundish has been used to study the effect of strand blockage on the residence time distribution (RTD) characteristics at the strands. All the experiments were performed under steady state conditions. Potassium chloride was used as a tracer for the study. The effects of blockage on the strand dissimilarity among the open strands were also studied. Both single and dual strand blockage experiments were performed. Blockage of strands deteriorated the RTD characteristics at the open strands. The results reveal the most preferred options for strand blockage when the plant operation needs to do so.  相似文献   

4.
A steady state, three‐dimensional, turbulent flow model has been developed in‐house for analysis of melt flow and residence time distribution phenomena in steelmaking tundish system. The governing equations of flow, turbulence and tracer dispersion were derived in terms of the Cartesian co‐ordinate systems and solved numerically with their associated boundary conditions adapting a control volume based finite difference procedure. In the numerical solution scheme, the pressure‐velocity coupling was treated via the popular Simple (semi implicit method for pressure linked equations) algorithm. Prior to carrying out elaborate numerical predictions for tundish geometry, the model was applied to several standard test problems and evaluated against corresponding bench mark results. Thus, several typical test problems such as, flows in a cubic cavity, flows in ducts of rectangular cross‐section, flow over flat plate and so on were simulated numerically to assess the adequacy and appropriateness of the computational procedure developed. Results thus obtained together with the bench mark solutions indicated that the mathematical model is internally consistent and sufficiently robust. Accordingly, the turbulent flow model was applied to simulate flow and Residence Time Distributions (RTD) in four different tundish designs . These included, a single strand and a two strand slab casting tundish systems, a six strand rectangular shaped tundish and a six strand delta shaped billet casting tundish. Various RTD parameters (e.g., minimum break through time, tmin, time at which peak concentration occurs, tpeak and average residence time, tav) were computed numerically in the four tundish systems and these were subsequently compared with corresponding experimental measurements derived from equivalent water model tundish systems. Except for the single strand tundish system, large differences between measurements and prediction (particularly on tmin and tpeak) were noted for the other three tundish geometries. Furthermore, the extent of such discrepancy was found to be relatively more pronounced for the multi‐strand tundish system. The possible reasons for such discrepancy is discussed in the text and it was shown computationally that relatively better agreement between theory and measurement can be achieved if, instead of the high Reynolds number k‐ε turbulence model, a low Reynolds number turbulence model is applied in the computational procedure.  相似文献   

5.
The main differences in the transient zone extent between the individual strands for the former industrial six-strand tundish configuration is the basis for undertaking this study. The aim this study was to improve the casting conditions by proposing the optimal equipment of the tundish working space. For economic reasons, only the variants with different baffles configurations were considered. It was also dictated by the simplicity of construction and the possibility of its implementation by the base operating steel mill. In the current study, industrial plant measurements and mathematical modeling were used. Industrial experimental data were used to diagnose the current state of the industrial tundish and then validate the numerical simulations. After this, the influence of different baffle configurations installed in the tundish on the steel flow characteristic was modeled mathematically. Residence time distribution (RTD) curves are plotted, and individual flow shares for the investigated tundish were estimated based on the curves. Finally, the industrial plant was rebuilt according to the numerical results and additional plant measurements were performed. A result of the appearance of the baffles in the tundish working space was the reduction of the transient zone extent. The results indicate the increasing share of the dispersed plug flow and a decreasing share of the dead volume flow, with a practically unchanging share of well-mixed volume flow in the modified tundish.  相似文献   

6.
通道式感应加热是近年来得到快速推广应用的中间包冶金新技术,其通道常为直通式结构。然而对于多流狭长型中间包,这种结构会造成包内各流钢水流动和温度差异大,从而影响铸坯质量的稳定性和一致性。为此,提出了一种分口通道结构,并以国内某钢厂一需要改造的6流中间包为原型,通过物理模拟方法探究了通道孔径、角度等对钢水流动的影响,且与常规直通道结构进行了对比。结果表明,分口两孔径分别为90、60 mm并配合挡坝结构的A1D方案可明显改善整个中间包的流动均匀性,各水口RTD曲线几乎重合。该结构应用于某厂重轨钢生产,铸坯质量稳定,各流钢水温差为0~3 ℃,取得了良好的应用效果。研究为该类中间包的结构设计提供了新的思路和方法,同时也表明传统的物理模拟方法仍可用于指导感应加热中间包的设计和优化。  相似文献   

7.
《钢铁冶炼》2013,40(3):229-234
Abstract

The present paper contains the results of a design optimisation study of a new enlarged tundish at ISCOR, Vanderbijlpark Works, Vanderbijlpark, South Africa. The paper describes the use of computational fluid dynamics (CFD) combined with mathematical optimisation to design the configuration of the new enlarged tundish. Design variables chosen include the position and sizes of baffles and baffle holes and pouring box width, while the design objective is maximisation of the minimum residence time (MRT) at operating level and at a typical transition level. Two different optimisation methods (DYNAMIC-Q and LS-OPT) are used and compared in the study. The combined MRT obtained by DYNAMIC-Q is 0·4, while LS-OPT converges to a value of 0·43, both starting from a combined MRT of 0·21. The study shows how mathematical optimisation techniques can be coupled to a commercial CFD package (FLUENT) to obtain optimum tundish designs with significant improvements. The CFD process is validated using plant data for similar designs.  相似文献   

8.
An exhaustive literature search indicates that, despite a large number of physical and mathematical model studies, very little efforts have been made to assess predicted flow and turbulence parameters in the tundish directly against equivalent experimental measurements until recently. Consequently, experimental measurements on the instantaneous velocity and residence-time distribution (RTD) were carried out in a scaled water model of a four-strand billet-casting tundish. While particle-image velocimetry (PIV) was applied to measure instantaneous flow, the electrical-conductivity measurement technique was applied to determine the RTD. Through PIV, the mean and the fluctuating components were derived along the central vertical plane of the tundish at two different liquid inflow rates: 1.55×10?4 m3/s and 3.10×10?4 m3/s, respectively. Similarly, RTD curves were obtained for tundish operations without and with a dam+turbulence inhibitor device (TID). Parallel to these operations, the flow and tracer dispersion were numerically predicted by FLUENT®. It is shown that the predicted time-average velocity components within the bath bear excellent correspondence with PIV measurements. On the assumption of isotropic fluctuations, turbulent kinetic energy was derived from experimental measurements, which agreed moderately with predictions. Furthermore, the experimentally derived fluctuating velocity components were compared with those obtained from the Reynolds stress model. This indicated very reasonable agreement between measurement and predictions (within ±20 pct). Despite such a difference, however, the extent of agreement between the measured and computed C curves was found to be excellent.  相似文献   

9.
通过三流T型连铸中间包物理模拟实验,研究了直挡墙、V型挡墙及其与抑湍器组合控流装置对中间包流动特性的影响。结果表明,直挡墙控流装置的控流效果优于无控流装置的中间包,但不如设计合理的V型挡墙控流装置;V型挡墙与挡坝组合控流装置(方案Ⅴ)的控流效果较好,在其基础上加入抑湍器后控流效果并不理想。因此,提出了针对三流T型中间包控流装置的优化设计方案。  相似文献   

10.
??To rationally assess and optimize the metallurgical effect of an industrially used three- strand asymmetric tundish?? the mixing characteristics of molten steel with different tundish configurations were investigated by residence time distribution??RTD??curves based on the analysis of fluid flow and temperature distribution at four flow control schemes?? and the behavior of the tundish level was tracked by employing volume- of- fluid??VOF??model. The fluid dynamics behavior of the tundish was studied in term of both steady and unsteady service situations with and without fluid flow control devices?? which made it possible to assess comprehensively the metallurgical effect of the given tundish. The results show that the flow control effect of bare tundish is weak. It is observed that there are distinct short- circuit flow and large proportion of dead zone?? together with the non- uniform temperature distribution and the flow state discrepancy among the three strands?? which will accordingly lead to the quality difference of the bloom castings. The improvements on the fluid flow characteristics and the temperature distribution have been observed in tundish with the combined application of baffles and turbulence inhibitor. The proportion of dead zone is decreased by 13. 28%?? the temperature difference is only 0. 5K among three outlets?? along with an improved fluid flow consistency. Additionally?? studies also show that this arrangement may have large steel level velocity and level fluctuation during ladle change period. That is likely to bring about exposure?? reoxidation and even slag entrainment of molten steel. Attentions should be paid to the control of the ladle change interval?? inlet flowrate and the moment height of liquid level.  相似文献   

11.
以某企业30t六流T型连铸中间包为模拟对象,采用数学模拟的方法研究了不同导流隔墙和坝的组合方式对多流中间包内流体流动特征的影响规律。结果表明,改变导流孔隔墙结构和倾角形式,并在六流T型包近水口两流之间放置坝,有利于延长钢水停留时间,改善多流中间包内流体流动特性并提高多流中间包各流流动一致性。  相似文献   

12.
以单流中间包停留时间分布曲线(RTD曲线)组合模型为基础,充分考虑中间包各流流量对流动特性的影响,提出一个适合多流中间包的RTD曲线分析模型。该模型使中间包各流所对应的短路流、活塞流、混合区及死区的体积分数之和为100%,有效避免了传统组合模型所导致的各流股对应区域的体积分数之和偏大(超过100%)的情况,使之符合客观物理现实。模型选用短路流、活塞流、混合区及死区体积分数的标准差,进行各流流动一致性判断。以此为理论依据,采用水模拟实验,结合正交设计实验方法,确定八流一体式中间包控流装置的最佳组合为:低孔挡墙+低挡坝+盆式湍流抑制器。  相似文献   

13.
建立了模拟连铸中间包底吹氩流动过程的水模型.通过测定分析水模型的RTD(停留时间分布)曲线研究了吹气流量、吹气位置及控流元件对中间包内流动特性的影响规律,并对此进行优化.结果表明:条形透气梁安放位置对中间包内的流动特性影响最为显著,均匀开孔的多孔挡墙和条形透气梁喷吹氩气二者的配合使用能获得理想的流动特性.  相似文献   

14.
六流方坯连铸中间包结构优化水模实验   总被引:5,自引:0,他引:5  
 通过六流方坯连铸中间包水模实验,研究了不同控流装置对其流动特性的影响。采用笔者提出的多流中间包流动特性分析模型及各流流动特性一致性的分析方法进行了定量描述。结果表明,带横墙和不带横墙的“V”型挡墙均能明显改善各流流动特性的一致性,与不带横墙的“V”型挡墙组合挡坝的数量、高度均对流动特性有影响,在较优的“V”型挡墙与挡坝组合控流装置基础上加入抑湍器后控流效果更佳。通过实验研究,提出了优化方案。  相似文献   

15.
The discharging properties of tundish slag for an improved hot‐tundish recycling process were investigated using a lab‐scale discharging experiment at 1773 K. The sticking ratio of the slag (defined as the weight ratio of the sticking slag on a Al2O3 crucible after discharging to the total slag at the moment of discharging) was found to decrease with increasing basicity ((%CaO)/(%SiO2)), FetO content and discharging temperature, and decreasing Al2O3 content. While the substitution of MgO for CaO increases the sticking ratio, Al2O3 and SiO2 show nearly identical effects on it. The experimental results were discussed in terms of the physical properties of slag, viz. viscosity and wettability. Finally, both sticking ratio and erosion tendency were linked with optical basicity, and an optimum region of slag composition for an improved hot‐tundish recycling process was proposed. With the proposed slag condition, the suitability of the plant slags for an optimized process was investigated.  相似文献   

16.
New types of furniture (also termed as flow modifiers or baffles) were incorporated in industrial scale, slab and bloom casting tundish systems with an aim to reduce residual metal loss (i.e., tundish skull) at the end of sequence casting. To this end, water model experiments were carried out in which, slag vortexing phenomena during emptying of tundish was studied embodying different types of furniture into existing tundish designs. These in general indicate that a wedge shaped bottom together with an embedded pouring box applied in conjunction have the potential to reduce tundish skull and improve yield losses significantly. In addition, limited residence time distribution measurement experiments were made to investigate metallurgical performance of modified design tundish systems. These indicate that deployment of new furniture with minor design modifications, despite contributing to a reduction in tundish capacity (10–12%), do not influence metallurgical performance of steelmaking tundish systems to any significant extent. Accordingly, designs of currently employed slab (32 and 37 tonnes capacity respectively) and bloom casting tundish (10 and a 17 tonnes capacity respectively) systems were modified in four different steel mills and plant trials conducted to assess the extent of yield improvement. Significant improvements in yield losses, to the extent of 50–60%, have been confirmed by the industry during sequence casting.  相似文献   

17.
刘艳贺  贺铸  刘双  李黎 《特殊钢》2013,34(5):5-8
通过计算流体力学软件FLUENT建立的数学模型对钢厂200 mm×1 600 mm铸坯二流T型23 t中间包现挡墙和坝、湍流控制器和坝、湍流控制器和现挡墙以及新挡墙4种结构方案进行三维数值模拟,研究原中间包及安装不同控流装置后的钢水流动特性。结果表明,在所有的设计方案中安装有湍流控制器和坝的中间包能够达到最佳优化效果;中间包的死区体积分率由30.18%降到16.51%,活塞流区与死区的体积分率比RVp/Vd由55.80%增大到129.44%;中间包内流动稳定,有利于夹杂物的上浮。  相似文献   

18.
采用水模型实验、数值模拟相结合的方法分析了原型中间包和优化中间包在钢流流场、中间包流动特性方面的差异.结果表明:优化中间包2#水口平均停留时间延长了8.0%,两水口流体平均停留时间之差下降了36.3%.流体在优化中间包内流动轨迹更加复杂,延长了流体在中间包内停留时间.通过工业实验证实了优化方案的可行性.工业试验表明:采用圆形湍流控制器加单挡墙组成控流装置的原型中间包,两水口钢液平均温差为5℃,浇注得到的钢坯试样中,140~300μm夹杂物数量为0.7 mg;而采用非对称长方形湍流控制器加多孔挡墙组成控流装置的中间包,两水口钢液平均温差为3℃或2℃,约为原型中间包两水口钢液平均温差的1/2;浇注得到的钢坯试样中,140~300μm夹杂物数量为0.2 mg,约为原型中间包的1/3.说明采用非对称长方形湍流控制器加多孔挡墙组成控流装置的中间包对两水口温度的均一性起到了显著作用,且更能有效地去除钢液中的夹杂物.  相似文献   

19.
试验利用PXI连铸综合水力学试验平台,采用1∶2的中间包水模型研究坝堰和多孔挡墙对某钢厂180mm×240mm小方坯六流连铸中间包中流动的影响,通过分析不同方案中间包的相关区域的流场特性和停留时间分布曲线(RTD曲线)来得出相关试验结论。试验结果表明,无坝堰和多孔挡墙的中间包内注流区的流体的流动均匀性不好,同时响应时间(7s)和峰值时间(224s)均比较短;优化后的中间包内的流体的流动特性得到较大程度改善,响应时间和峰值时间分别延长99和159s,死区体积减小了45.71%,活塞流体积从12.03%增大到25.47%。  相似文献   

20.
摘要:为解决六流H型通道感应加热中间包原型死区比例大,各流一致性差,第3流和第4流钢水短路流的问题,通过水模拟实验对中间包流场进行优化,同时采用数值模拟对中间包温度场进行了模拟。结果表明,在中间包内添加挡坝或在V形挡墙上开导流孔均可改善流体的流动状况。与原型结构相比,优化后的A4方案(V形挡墙上开2个水平倾角分别为36°、44°,孔径105mm,距包底分别为170和510mm的导流孔)总体平均停留时间延长了165s,死区比例降低了23.95%,各流水口之间的最大温差仅为0-5K,一致性显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号