首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
超高分子量聚乙烯的固态挤出研究   总被引:1,自引:0,他引:1  
用柱塞式挤出机进行超高分子量聚乙烯(UHMWPE)的固态挤出,所得制品光滑、透明、密度较大,拉伸强度超过110MPa,拉伸弹性模量高达85GPa。差示扫描量热分析和扫描电子显微镜观察表明,制品内部产生大量的微纤结构,坯料固态挤出前的退火处理和固态挤出的强变形致使制品结晶度提高,分子链取向增强,其拉伸强度和拉伸弹性模量得到极大提高,其熔点、熔融焓、熔融熵也有所提高。  相似文献   

2.
Solid state rolling of semi-crystalline polymers is shown to be an effective method of producing high strength, high modulus tape at acceptable production rates. High density polyethylene tape was produced having a tensile strength exceeding 300 MPa and a tensile modulus of 8.7 GPa at production rates exceeding 8 m/min. A significant factor in producing highly oriented tape by the rolling process is roll temperature. Increasing the roll temperature from 25°C to 125°C not only increases the maximum extent of orientation achievable, but increases the mechanical properties at a given degree of thickness reduction. Internal frictional heat development limited the maximum thickness reduction ratio of polypropylene to 6.6:1. This reduction was reached by rolling at 150°C. The resultant tape had a tensile modulus of 5.1 GPa and a tensile strength of 300 MPa.  相似文献   

3.
The tensile properties of polypropylene fibers, produced in a short-spin line, are correlated with the parameters of the three processing stages (spinning, drawing, and annealing), and with the molecular weight distribution. In general, tensile stiffness and strength increase with increasing molecular orientation, while the elongation at break decreases. The degree of orientation is determined by the deformation ratios and temperatures of the first two stages. Tensil modulus and strength also increase with increasing annealing stage shrinkage ratio. All the tensile properties, including the elongation at break, increase with increasing average molecular weight. The mechanisms of crystallization and deformation are related to the molecular weight distribution in different ways. Hence, the tensile modulus is highest for broad distributions when the draw ratio is low, and for narrow distributions when the draw ratio is high. The tensile strength increases and the elongation at break decreases as the width of the molecular weight distribution decreases, for all combinations of processing parameters. The distribution of tensile strength, for fibers with high draw ratios, broadens as the molecular weight distribution narrows. The total draw ratio of fibers, as experienced during processing and testing, and the true stress at break, are discussed in terms of deformation rates and relaxation times. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
High-pressure injection molding (nominal pressure 500 MPa) is known to substantially improve the mechanical properties of high-density polyethylene of a high molecular weight (HMWPE). This work shows that if the mold is equipped with an exit cavity, the tensile modulus and strength of HMWPE-bars molded is further improved at high pressure levels. The maximum values of the stiffness and strength (thin bars, 1 mm) obtained with the exit chamber is about 12 GPa and 260 MPa, respectively. The improvement due to the exit cavity is of the order of 30 percent for the tensile strength for thicknesses lower than 4mm, while the modulus increases about 1 to 1.5 GPa for bars with thicknesses between 1 and 6 mm. The orientation of the melt during the filling of the mold was also found to have an influence on the mechanical properties of the HMWPE bars.  相似文献   

5.
Polymer films produced by tubular film blowing have a unique morphology that results from the large elongational flow in melt draw down and biaxial orientation due to bubble blow-up. Three high density polyethylene (HDPE) blown films were produced under similar processing conditions from resins which varied principally in molecular weight (MW) and molecular weight distribution (MWD). Scanning electron microscopy (SEM) showed that the lower MW and narrower MWD resin produced film which had a uniaxial orientation of stacked lamellar crystals. The higher MW (HMW) and broad MWD resins produced films consisting of a network of nearly orthotropically oriented lamellar stacks. Greater high molecular weight fraction (MW > 106) in the resin resulted in more random orientation. The influence of these different structures on properties was studied by examining the plastic zone formation at crack tips and uniaxial tensile deformation with the SEM and comparing them to the macroscopic stress-strain behavior. A continuous deformation of the network structure was observed in the HMW films. Lamellar deformation occurred primarily in regions of stacks oriented parallel to the tensile axis. Macroscopic yield occurred at 6 to 10 percent strain via a shearing and opening the lamellar crystals. Irreversible deformation occurred from ?50 to 400 percent strain by transformation of the oriented lamellae to microfibrils. Eventually all the lamellar stacks in the network become aligned with the tensile axis. This process was found to improve the tear resistance in the crack propagation experiments. The lamellar stacks in the network orient perpendicular to the crack independent of crack propagation direction, insuring a more uniform transmission of stress and preventing local yielding. The tensile modulus, yield stress, and ultimate strength were highest in the film containing more high molecular weight polymer.  相似文献   

6.
A new morphological model is discussed which is based on the relation of tensile modulus and strength to the macrofibrillar dimensions (aspect ratio) and the shear modulus of ultrahigh molecular weight polyethylene fibrillar structures of draw ratio DR ≤ 200–300. Such structures were obtained by solid state deformation of the as-received powder and solution grown crystals using an extrusion-drawing process. According to this model, the highest tensile modulus and tensile strength values that can be obtained are 212 GPa and 13.3 GPa, i.e., significantly close to the theoretically calculated values.  相似文献   

7.
乙烯-甲基丙烯酸共聚物增容PE-HD/木纤维复合材料的研究   总被引:5,自引:1,他引:5  
以乙烯-甲基丙烯酸共聚物(EMAA)作为增容剂,采用木纤维对高密度聚乙烯(PE—HD)进行填充改性。研究了增容剂的相对分子质量、官能团含量以及木纤维用量对木塑复合材料性能的影响。结果表明,复合材料的拉伸强度、弯曲强度和弯曲模量随着木纤维用量的增加而大幅度提高,而冲击性能则明显降低;与未添加增容剂的复合材料相比,增容剂的加入进一步改善了木塑复合材料的弯曲和拉伸性能;当木纤维用量达到50%(质量含量,下同)时,复合材料的拉伸强度、弯曲强度和弯曲模量分别可达26gPa、40gPa和1807gPa。当EMAA酸值相同时,随着相对分子质量的增大,所制得复合材料的各项性能均提高。  相似文献   

8.
The effective drawability of solution-cast or -spun high molecular weight polyethylene is enhanced significantly in comparison with an identical polymer sample that is crystallised from the melt. The maximum attainable draw ratio, which primarily determines the final mechanical properties, increases continuously with decreasing initial polymer concentration in solution. A tensile strength of 3.2 GPa and an axial Young's modulus of 120 GPa could be obtained by drawing high molecular weight polyethylene cast from a 1% polymer solution. This phenomenon of increased drawability is discussed in terms of a reduced number of entanglements per macromolecule in solution-cast polyethylene.  相似文献   

9.
To enhance the physical properties of syndiotacticity-rich (syndiotactic diad content 63·4%) ultra-high molecular weight (UHMW) (number-average degree of polymerization 12300) poly(vinyl alcohol) (PVA) film, it was solution blended with rigid-rod imogolite in dimethyl sulphoxide. In addition, the blend film prepared was stretched using a high-temperature zone drawing technique for effective orientation of the film. Through a series of experiments, it was found that imogolite caused significant changes in the structure and properties of syndiotacticity-rich UHMW PVA film, i.e. imogolite acted as an important agent which increased crystal orientation of syndiotacticity-rich UHMW PVA, resulting in enhanced tensile strength of the film. However, imogolite played a hindering role in raising the amorphous orientation of syndiotacticity-rich UHMW PVA. The maximum tensile modulus of 19·8GPa and maximum tensile strength of 1·8GPa could be obtained at the maximum draw ratio of 7·45 for PVA/imogolite blend film. In the case of PVA homo film, the highest tensile modulus and strength were 25·2GPa and 1·4GPa, respectively. © 1998 Society of Chemical Industry  相似文献   

10.
Adding conductive carbon fillers to insulating thermoplastic polymers increases the resulting composite's electrical conductivity. Carbon nanotubes (CNTs) are very effective at increasing composite electrical conductivity at low loading levels without compromising composite tensile and flexural properties. In this study, varying amounts (2–8 wt %) of CNTs were added to polycarbonate (PC) by melt compounding, and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile and flexural properties. The percolation threshold was less than 1.4 vol % CNT, likely because of CNTs high aspect ratio (1000). The addition of CNT to PC increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 6 wt % (4.2 vol %) CNT in PC resin had a good combination of properties for electrical conductivity applications. The electrical resistivity and thermal conductivity were 18 Ω‐cm and 0.28 W/m · K, respectively. The tensile modulus, ultimate tensile strength (UTS), and strain at UTS were 2.7 GPa, 56 MPa, and 2.8%, respectively. The flexural modulus, ultimate flexural strength, and strain at ultimate flexural strength were 3.6 GPa, 125 MPa, and 5.5%, respectively. Ductile tensile behavior is noted in pure PC and in samples containing up to 6 wt % CNT. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Ultrahigh molecular weight polyethylene (UHMWPE) reactor powders have been found to be processable in the solid state by the techniques of rolling and roll-drawing. Plates of compacted UHMWPE reactor powder were prepared below their melting points. These plates were then rolled at 124°C. The maximum uniaxial draw ratio (DR) obtained by multiple rolling was about 10. In additional experiments, rolled plates of a DR of 6 were further drawn by tensile stretching at a temperature of 135°C. The specimens prepared by rolling and by the two-stage draw were characterized by tensile measurements, differential scanning calorimetry (DSC), and X-ray diffraction. Results show that, on rolling alone, the tensile modulus and tensile strength achieved were 3 GPa and 42 MPa, respectively, at a DR of 9.6. The rolled plates were effectively drawn further to a total DR of 86. Such highly drawn films exhibited tensile moduli and tensile strength up to 81 and 1.3 GPa, respectively. A high crystallinity and high crystal orientation were also obtained by the two-stage draw.  相似文献   

12.
The continuous production of transparent high strength ultra‐drawn high‐density polyethylene films or tapes is explored using a cast film extrusion and solid‐state drawing line. Two methodologies are explored to achieve such high strength transparent polyethylene films; i) the use of suitable additives like 2‐(2H‐benzotriazol‐2‐yl)‐4,6‐ditertpentylphenol (BZT) and ii) solid‐state drawing at an optimal temperature of 105 °C (without additives). Both methodologies result in highly oriented films of high transparency (≈91%) in the far field. Maximum attainable modulus (≈33 GPa) and tensile strength (≈900 MPa) of both types of solid‐state drawn films are similar and are an order of magnitude higher than traditional transparent plastics such as polycarbonate (PC) and poly(methyl methacrylate). Special emphasis is devoted to the effect of draw down and pre‐orientation in the as‐extruded films prior to solid‐state drawing. It is shown that pre‐orientation is beneficial in improving mechanical properties of the films at equal draw ratios. However, pre‐orientation lowers the maximum attainable draw ratio and as such the ultimate modulus and tensile strength of the films. Potential applications of these high strength transparent flexible films lie in composite laminates, automotive or aircraft glazing, high impact windows, safety glass, and displays.  相似文献   

13.
This paper describes the process optimization in injection molding of high-density polyethylene (HDPE). Both conventional injection molding and shear controlled orientation (SCORIM) were employed in processing. The process optimization was based on design of experiments and complemented with analysis of variance. Mechanical characterization was carried out by tensile testing. Wide-angle X-ray diffraction and differential scanning calorimetry were used for the structural characterization of the moldings. High-density polyethylene exhibits 7.2 GPa Young's modulus and 155 MPa of ultimate tensile strength following the application of SCORIM processing. These results account for a fourfold increase in Young's modulus and a fivefold increase in ultimate tensile strength compared to conventional injection molding. The maintenance of toughness while enhancing stiffness and strength of the SCORIM moldings is attributable to an oriented morphology developed during shear flow, i.e., shish-kebab structure. The frequency of shearing action has the strongest influence on the morphology development. It is also demonstrated that the studied parameters are very much interdependent. It is possible to achieve substantial gains in mechanical properties of HDPE in SCORIM processing without causing a substantial increase in cycle time. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2473–2483, 1999  相似文献   

14.
This article reports the influence of oscillating pressure on the mechanical performance of general-grade high-density polyethylene (HDPE). The tensile strength of 93 MPa and the Young's modulus of 5 GPa were obtained by an oscillating packing technique. The great improvement of the mechanical properties of HDPE specimens is due to the existence of the shish-kebab crystalline structure, the orientation of the molecular chains along the flow direction, and the more perfect crystallites. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The solid-state drawing behavior and properties of solution-spun polyvinylalcohol fibers were investigated. A comparsion was made with solution-spun, ultra-drawn polyethylene fibers. The maximum attainable draw ratio of polyvinylalcohol fibers is low (~ 20), even at optimized conditions with respect to polymer concentration in solution. In contrast to polyethylene, the maximum attainable draw ratio hardly increases with increasing molecular weight. However, high modulus (~ 70 GPa) and strength (~ 2.3 GPa) polyvinylalcohol fibers can be produced, despite the low maximum attainable draw ratio. It is suggested that the observed phenomena, with respect to both the drawing behavior and properties of polyvinylalcohol fibers, originate from intermolecular hydrogen bonds in the polymer.  相似文献   

16.
Strong carbon nanofibers with diameters between 150 nm and 500 nm and lengths of the order of centimeters were realized from electrospun polyacrylonitrile (PAN). Their tensile strength reached a maximum at 1400 °C carbonization temperature, while the elastic modulus increased monotonically until 1700 °C. For most carbonization temperatures, both properties increased with reduced nanofiber diameter. The tensile strength and the elastic modulus, measured from individual nanofibers carbonized at 1400 °C, averaged 3.5 ± 0.6 GPa and 172 ± 40 GPa, respectively, while some nanofibers reached 2% ultimate strain and strengths over 4.5 GPa. The average tensile strength and elastic modulus of carbon nanofibers produced at 1400 °C were six and three times higher than in previous reports, respectively. These high mechanical property values were achieved for optimum electrospinning parameters yielding strong PAN nanofibers, and optimum stabilization and carbonization temperatures, which resulted in smooth carbon nanofiber surfaces and homogeneous nanofiber cross-sections, as opposed to a previously reported core–shell structure. Turbostratic carbon crystallites with average thickness increasing from 3 to 8 layers between 800 °C and 1700 °C improved the elastic modulus and the tensile strength but their large size, discontinuous form, and random orientation reduced the tensile strength at carbonization temperatures higher than 1400 °C.  相似文献   

17.
Summary This note deals with the preparation of ultra-high strength polyethylene filaments by suspension spinning and subsequent hot-drawing at 148 °C. Suspension spinning involves the flow of stabilized suspensions of high molecular weight polyethylene powder in a solvent mixture through a long heated tube. In the tube, which acts as the spinning apparatus, the polyethylene is dissolved after which the polymer solution is spun in air. Under appropriate conditions of spinning and hot-drawing monofilaments were produced with a tensile strength at break of 3.8 GPa and a Young's modulus of 124 GPa.  相似文献   

18.
Daisuke Sawai 《Polymer》2006,47(12):4445-4453
The uniaxial drawing of UHMW-PAN fibers spun from a dilute solution into methanol coagulation baths at different temperatures and the resultant structure and tensile properties of the drawn products were studied. Although the initial morphology of the fibers and the deformation mode in a lower draw ratio (DRt) range were significantly dependent on the temperatures of the coagulation bath, the tensile properties at a given DRt, as well as the maximum achieved ones, were comparable. Both the tensile modulus and strength increased steadily with the DRt and reached 35 and 1.8 GPa, respectively, at the highest DRt of ∼80. These tensile properties are among the highest ever reported for PAN fibers. The achievement of such high tensile properties for extremely drawn fibers is ascribed to the conformational changes of crystalline chains from the 3/1 helix to the planar-zigzag with increasing DRt, the improvement in the uniformity of the fiber diameter along the fiber axis, and the decrease in fiber diameter. Indeed, the tensile strength of fibers prepared from a dilute solution and having comparable moduli increased with a decrease in the fiber diameters. The reciprocal of the strength was proportional to the square root of the diameter as suggested by the Griffith theory. Extrapolation to a zero diameter yielded an ultimate tensile strength of 2.4±0.1 GPa for a fiber having a maximum achieved tensile modulus of 35±1 GPa.  相似文献   

19.
The process described as “roll-drawing” has been applied to commercial extruded sheets of isotactic polypropylene (M?n = 70,900). Preheated billets were drawn into thin, clear, transparent sheets in a single pass, producing uniaxial orientation of the polymer molecules in the draw direction. At the maximum draw ratio of 20, the ultimate tensile strength and Young's modulus in the draw direction were 0.5 GPa and 20 GPa respectively. The mechanical properties transverse to the draw direction were virtually unchanged. The theory of fiber reinforcement for unidirectional anisotropic plates was applied to interpret the orientation dependence of the stress-strain behavior of the drawn sheets. From these results, it was estimated that the mechanical properties of biaxially laminated polypropylene sheets equaled the performance of aramid and carbon fiber composites, The roll-drawing process appears to be economically attractive for the production of ultra-high modulus crystalline thermoplastics in sheet form having excellent uniaxial or biaxial properties.  相似文献   

20.
The physical structure of polyoxymethylene (POM) drawn into two steps by a press and a simultaneous biaxial drawing machine was studied and the drawing dependency on the degree of the crystallization, the orientation, and the modulus were analyzed. The stretching ratio by the press reached 6.0 and the tensile modulus of elasticity increased from 2.5 to 4.5 GPa. However, the degree of crystallization decreased slightly. The rupture elongation increased in the lower drawing region and it peaked when the drawing ratio was 1.7. The film stretched by 2 times was drawn by the biaxial drawing machine. The high tensile modulus of elasticity was obtained and the maximum value was 11.5 GPa at 14 times of the drawing ratio. The lamella structure of POM was supposed to loosen and become oriented to the drawing axis ambiguously by the first drawing. The lamella was highly oriented by the second stretching procedure. The tensile strength and the elongation as well as the modulus were analyzed as a function of the degree of the stretching and the crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1223–1227, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号