首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical calculations of flow and injection pressures during injection molding of fiber-filled thermoplastics are compared to experimental measurements. The flow is modeled as a 2–D, nonisothermal, free-surface flow with a new viscosity model dependent upon temperature, pressure, and fiber concentration. The steady-state viscosity model is developed to account for the fiber-concentration and shear-thinning viscosities of the polymer based upon combining the Dinh-Armstrong fiber model with the Carreau viscosity model. The new model has four parameters, three from the Carreau model and one from Dinh-Armstrong for fiber concentrations. The new model calculates reasonably well the steady-state viscosity of fiber-filled polypropylene over the shear rate range of 0.01 s?1to 20 s?1. The numerical work successfully describes the flow of fiber-filled polymers during injection molding using finite-difference solutions for the transport equations and marker particles to track the flow front. The comparisons between the calculated and measured pressure drops for an injection molded part were reasonable for the unfilled and fiber-filled polypropylene materials. The pressure drop comparison is very good for slow fill of a base case resin, Himont polypropylene, but not as good for fast fill of the resin. The pressure drop comparison is very good for fast fill of glass-filled resin, DSM polypropylene with 10% and 20% short fibers, but not as good for slow fill of the resin and resin plus fibers.  相似文献   

2.
A numerical simulation is presented that combines the flow simulation during injection molding with an efficient algorithm for predicting the orientation of short fibers in thin composite parts. Fiber-orientation state is represented in terms of a second-order orientation tensor. Fiber-fiber interactions are modeled by means of an isotropic rotary diffusion. The simulation predicts flow-aligned fiber orientation (shell region)near the surface with transversely aligned (core region) fibers in the vicinity of the mid-plane. The effects of part thickness and injection speed on fiber orientation are analyzed. Experimental measurements of fiber orientation in plaque-shaped parts for three different combinations of cavity thickness and injection speed are reported. It is found that gapwise-converging flow due to the growing layer of solidified polymer near the walls tends to flow-align the fibers near the entrance, whereas near the melt front, gapwise-diverging flow due to the diminishing solid layer tends to lign the fibers transverse to the flow. The effect of this gapwise-converging-diverging flow is found to be especially significant for thin parts molded at slower injection speeds, which have a proportionately thicker layer of solidified polymer during the filling process. If the fiber orientation is known, predictions of the anisotropic tensile moduli and thermal-expansion coefficients of the composite are obtained by using the equations for unidirectional composites and taking an orientation average. These predictions are found to agree reasonably well with corresponding experimental measurements.  相似文献   

3.
Polymers filled with conducting fibers to prevent electromagnetic interference (EMI) performance have recently received great attention due to the requirements of 3C (computer, communication, and consumer electronics) products. In the present article, the effect of fiber content and processing parameters, including melt temperature, mold temperature, and injection velocity, on the electromagnetic interference shielding effectiveness (SE) in injection molded ABS polymer composites filled with conductive stainless steel fiber (SSF) was investigated. The influence of fiber orientation and distribution resulting from fiber content and molding conditions on EMI performance was also examined. It was found from measured results that fiber content plays a significant role in influencing part EMI SE performance. SE value can reach the highest values of approximately 40 dB and 60 dB at 1000 MHz frequency for fiber content 7 wt % and 14 wt %, respectively, under the best choice of molding conditions. Higher melt and mold temperature would increase shielding effectiveness due to a more uniform and random fiber orientation. However, higher injection velocity leading to highly‐orientated and less uniform distribution of fiber reduces shielding effectiveness. Among all molding parameters, melt temperature affects SE performance most significantly. Its influence slightly decreases as fiber content increases. Injection speed plays a secondary importance in affecting SE values, and its influence increases as fiber content increases. Upon examination of fiber distribution via optical microscope and subsequent image analysis, it was found that the fiber becomes more densely and random distributed toward the last melt‐filled region, whereas fiber exhibits less concentration around the middle way of the flow path. This can be attributed to the combined effects of fountain flow, frozen layer thickness, and gapwise melt front velocity. The results indicate that molding conditions, instead of fiber content alone, are very important on the SE performance for injection molded SSF filled ABS composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1072–1080, 2005  相似文献   

4.
研究了短纤维-弹性体复合材料注射充模过程中,流动前锋和上的喷泉效应,固化层及纤维用量与纤维之间相互作用等的影响,建立了薄壁拉伸试样型腔中短纤维-弹性体复合材料注射充模过程及其纤维取向分布的数学物理模型。  相似文献   

5.
This study of injection molding of glass fiber reinforced phenolic molding compounds examines fiber breakage and fiber orientation with key material and processing variables, such as injection speed, fiber volume fraction, and the extent of resin pre-cure. The fiber orientation, forming discrete skin-core arrangements, is related to the divergent gate to mold geometrical transition, the extent of pre-cure and injection speed functions of the melt viscosity. Transient modifications to the melt viscosity during mold filling produce variations in skin/core structure along the flow path, which are correlated to the mechanical properties of injection moldings. The melting characteristics of the phenolic resin during plasticization impose a severe environment of mechanical attrition on the glass fibers, which is sequentially monitored along the screw, and during subsequent flow through runners and gates of various sizes. Differences found between the processing characteristics of thermosets and thermoplastics raise questions concerning the applicability of thermoplastic injection molding concepts for thermosets.  相似文献   

6.
Injection‐compression molding (ICM) has received increased attention because of its advantages over conventional injection molding (CIM). This article aims to investigate the effects of five dominating ICM processing parameters on fiber orientation in short‐fiber‐reinforced polypropylene (SFR‐PP) parts. A five‐layer structure of fiber orientation is found across the thickness under most conditions in ICM parts. This is quite different from the fiber orientation patterns in CIM parts. The fibers orient orderly along the flow direction in the shell region, whereas most fibers arrange randomly in the skin and the core regions. Additionally, the fiber orientation changes in the width direction, with most fibers arranging orderly along the flow direction at positions near the mold cavity wall. The results also show that the compression force, compression distance, and compression speed play important roles in determining the fiber states. Thicker shell regions, in which most fibers orient remarkably along the flow direction, can be obtained under larger compression force or compression speed. Moreover, the delay time has an obvious effect on the fiber orientation at positions far from the gate. However, the effect of compression time is found to be negligible. POLYM. COMPOS., 31:1899–1908, 2010. © 2010 Society of Plastics Engineers.  相似文献   

7.
Recently, there has been growing interest in water-assisted injection molding (WAIM) not only for its advantages over gas-assisted molding (GAIM) and conventional injection molding (CIM), but also for its great potential advantages in industrial applications. To understand the formation mechanism of water penetration induced fiber orientation in overflow water-assisted injection molding (OWAIM) parts of short glass fiber-reinforced polypropylene (SGF/PP), in this work, the external fields and water penetration process within the mold cavity were investigated by experiments and numerical simulations. The results showed that the difference of fiber orientation distribution in thickness direction between WAIM moldings and CIM moldings was mainly ascribed to the great external fields generated by water penetration. Besides, fiber orientation depended on the position both across the part thickness and along the flow direction. Especially in the radial direction, fiber orientation varied considerably. The results also showed that the melt temperature is the principal parameter affecting the fiber orientation along the flow direction, and a higher melt temperature significantly facilitated more fibers to be oriented along the flow direction, which is quite different from the results as previously reported in short-shot water-assisted injection molding (SSWAIM). A higher water pressure, shorter water injection delay time, and higher melt temperature significantly induced more fibers to be orderly oriented in OWAIM moldings, which may improve their mechanical performances and broaden their application scope.  相似文献   

8.
The development of molecular orientation in thermotropic liquid crystalline polymers (TLCPs) during injection molding has been investigated using two‐dimensional wide‐angle X‐ray scattering coordinated with numerical computations employing the Larson–Doi polydomain model. Orientation distributions were measured in “short shot” moldings to characterize structural evolution prior to completion of mold filling, in both thin and thick rectangular plaques. Distinct orientation patterns are observed near the filling front. In particular, strong extension at the melt front results in nearly transverse molecular alignment. Far away from the flow front shear competes with extension to produce complex spatial distributions of orientation. The relative influence of shear is stronger in the thin plaque, producing orientation along the filling direction. Exploiting an analogy between the Larson–Doi model and a fiber orientation model, we test the ability of process simulation tools to predict TLCP orientation distributions during molding. Substantial discrepancies between model predictions and experimental measurements are found near the flow front in partially filled short shots, attributed to the limits of the Hele–Shaw approximation used in the computations. Much of the flow front effect is however “washed out” by subsequent shear flow as mold filling progresses, leading to improved agreement between experiment and corresponding numerical predictions. POLYM. ENG. SCI.,, 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
I. INTRODUCTION

While it is true that preform processes involving the use of long or continuous fibers are known and used in the manufacture of reinforced thermoplastic articles–Azdel [1] or STX sheet [2], for example–it is generally the case that such articles are formed by injection molding. Both the feedstock requirements for this process and the occurrence of high melt shear during it ensure that only short fibers will be present in the finished article. Although the use of slow screw speeds, slow injection rates, low back pressure, wide sprues, runners, and gates, and large radii of curvature avoids fiber breakage during molding, such conditions are not often found in practice. Furthermore, the necessity of incorporating reground material into the feedstock also ensures short fiber lengths in the final part, lengths not greatly in excess of the critical length required for effective stress transfer from polymer matrix to reinforcing fiber. In a practical part, design uncertainties caused by fiber length attrition are further compounded by the effects of fiber orientation. Although length distribution effects have been studied by a number of workers, both experimentally [3] and theoretically [4], relatively little has been reported on orientation effects in short fiber reinforced thermoplastics.  相似文献   

10.
短纤维增强熔体三维充模模拟及制品性能预测   总被引:1,自引:0,他引:1       下载免费PDF全文
文艳  欧阳洁  周文 《化工学报》2013,64(9):3102-3109
基于气-液-固三相模型,给出了适用于三维流场的纤维质心虚拟速度、纤维平动与取向、动量交换源项的求解公式,建立了描述短纤维增强聚合物熔体充模过程的三维模型。采用同位网格有限体积法和Level Set界面追踪技术,实现了充模过程的三维动态模拟。并且,根据模拟计算出的平均取向角,提出了三维取向短纤维增强复合材料力学性能参数计算的一种简化模型。数值结果表明:三维模拟技术可有效反映注塑成型充模的流动过程和喷泉效应;纤维取向分析可量化显示纤维在型腔中的表层-芯层结构取向;弹性模量计算结果与实验结果吻合较好。  相似文献   

11.
In the processing of fiber-reinforced polymer composites, especially in injection molding, the fiber's orientation, length, and distribution vary depending on the location of the channel flow and its properties, which affects the performance of final products. To investigate the intricate behavior of fiber suspensions under Poiseuille flow, we used the hybrid simulation approach, multiparticle collision dynamics–molecular dynamics (MPC-MD), which takes hydrodynamic interactions and fiber properties (strength, flexibility) into account. For non-breakable and rodlike fibers, fibers align well along the flow direction while showing more alignment near the wall. As fiber becomes breakable and/or flexible, the length and orientation of fibers strongly depend on their properties. The interesting phenomenon is specifically seen for breakable and semiflexible fibers, where the orientation of the fiber exhibits non-monotonic behavior depending on the flow rate. This complex behavior highlights the importance of comprehending the dynamics of many types of fibers and necessitates research into the best conditions for injection molding.  相似文献   

12.
A visualization study of the flow of fiber-filled resin through cylindrically convergent channels has been conducted. Epoxy resins filled with glass fibers were tested to simulate the flows experienced during the processing of fiber reinforced thermoplastics. Specific phenomena which have been investigated include the kinematics, orientation of the suspended fibers, formation of possible unwanted stagnant eddies at the entrance of the channel, and the fiber length degradation. It was found that the extensional flow in the convergent channel plays an important role in orienting the fibers.  相似文献   

13.
This paper sets out the theory and numerical methods used to simulate filling and fiber orientation is simple injection moldings (a film-gated strip and a center-gated disk). Our simulation applies to these simple geometry problems for the flow of a generalized Newtonian fluid where the velocities can be solved independently of fiber orientation. This simplification is valid when the orientation is so flat that the fibers do not contribute to the gapwise shear stresses. A finite difference solution calculates the temperature and velocity fields along the flow direction and through the thickness of the part, and fiber orientation is then integrated numerically along pathlines. Fiber orientation is three-dimensional, using a second-rank tensor representation of the orientation distribution function. The assumptions used to develop the simulation are not valid near the flow front, where the recirculating fountain flow complicates the problem. We present a numerrical scheme that includes the effect of the fountain flow on temperature and fiber orientation near the flow front. The simulation predicts that the orientation will vary through the thickness of the part, causing the molding to appear layered. The outer “skin” layer is predicted only if the effects of the fountain flow and heat transfer are included in the simulation.  相似文献   

14.
This work deals with the simulation of the filling of a cavity utilizing the Marker-and-Cell numerical technique in solving the transient problem involved. The cavity is confined by two parallel plates, and is “end fed.” The flow was assumed isothermal and the fluid incompressible, obeying the power law model. Special attention was given to the flow region near the advancing melt front, in order to obtain a better insight of the “fountain effect,” during which the fluid flows from the center to the walls of the cavity. The results of the simulation of the front flow region are supported by and in qualitative agreement with experimental results involving “tracer resins” during cavity filling. Although the flows considered were slow and isothermal, this study has significant practical ramifications on industrial mold filling during injection molding.  相似文献   

15.
Experiments utilizing charges constructed of black and white sheet molding compound (SMC) reveal the basic kinematic mechanisms controlling the flow of the fiber-filled compound in compression molding. The experimental results show that SMC deforms in uniform extension within individual charge layers, with slip occurring at the mold surface and, for slower closing speeds, also between the layers of SMC. When the mold closes rapidly, the charge extends uniformly through its thickness, with all slip concentrated at the mold surface.  相似文献   

16.
Fiber orientations caused by the flow in the thickness plane during injection molding of short fiber reinforced polymer composites has been simulated. The Lagrangian scheme was employed for the finite element analysis. Flow fields were solved by using a penalty method with Uzawa's scheme and orientation fields were also solved by using the second order orientation tensor. A generalized Newtonian fluid whose rheological behavior is independent of fiber orientation was assumed. Automatic mesh generation using an elliptic grid generator was developed for quadrilateral elements. Mold filling and orientation analyses were performed for a cavity of rectangular cross section. To determine the orientation state in other cross-sectional geometries, numerical analyses were also performed for two different typical cross sections. As the result, orientation of short fibers in the flow field was analyzed qualitatively and quantitatively. According to the state of short fiber orientation in the thickness plane, the orientation field can be classified into three regions in the flow direction and three layers in the thickness direction. Orientation of short fibers was mainly influenced by elongational and shear flows. It was observed that critical values are present for upper limits of orientation. Effects of initial orientation at the inlet on the orientation field were examined.  相似文献   

17.
Thermotropic liquid crystal polymers consist of rod-like molecules and are often called “self reinforcing thermoplastics.” Their rheological behaviors as well as orientation development during processing are often very similar to those of short fiber-filled composites. Without reinforcement, the polymer shows superior mechanical properties to conventional glass fiber-reinforced engineering resins. The orientation distribution in the crosssection as well as flow patterns in the molded thermotropic polymers are clearly visible to the naked eye due to color differences. This makes it particularly convenient to study the orientation distribution as well as the flow patterns of packing, back flow, jetting, flow instabilities, and weld line formation in injection molding. This paper discusses physical properties of a typical ther motropic polymer and their relationship to mold filling process in the injection molding.  相似文献   

18.
A study has been made of the fiber orientation in short glass fiber-filled thermoplastics resulting from convergent, divergent and shear flows. Convergent flow results in high fiber alignment along the flow direction, whereas diverging flow causes the fibers to align at 90° to the major flow direction. Shear flow produces a decrease in alignment parallel to the flow direction and the effect is pronounced at low flow rates. Non-linear Bagley plots have been observed, under some conditions, during rheological measurements. The data are consistent with a pressure dependent viscosity.  相似文献   

19.
Recent improvements in injection molding numerical simulation software have led to the possibility of computing fiber orientation in fiber reinforced materials during and at the end of the injection molding process. However, mechanical, thermal, and electrical properties of fiber reinforced materials are still largely measured experimentally. While theoretical models that consider fiber orientation for the prediction of those properties exist, estimating them numerically has not yet been practical. In the present study, two different models are used to estimate the thermal conductivity of fiber reinforced thermoplastics (FRT) using fiber orientation obtained by injection molding numerical simulation software. Experimental data were obtained by measuring fiber orientation in injection molded samples' micrographs by image processing methods. The results were then compared with the numerically obtained prediction and good agreement between numerical and experimental fiber orientation was found. Thermal conductivity for the same samples was computed by applying two different FRT thermal conductivity models using numerically obtained fiber orientation. In the case of thermal conductivity, predicted results were consistent with experimental data measurements, showing the validity of the models. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39811.  相似文献   

20.
A new ternary planar random fiber composite manufactured under the name RMC (Reinforced Melamine Compound) is studied. Microstructure and stiffness of the random glass fiber-reinforced and particulate-filled melamine-formaldehyde composite processed by compression molding from RMC molding compounds are analyzed. Glass fiber bundles in a mixture of melamine-formaldehyde resin with various size of filler particulates outside the bundle space, and small size particulates inside the bundle space are found from scanning electron microscopy (SEM) and optical micrographs. The tensile modulus of the particulate-filled matrix is modeled using equations of Halpin and Tsai, and Lewis and Nielsen. The tensile modulus of the resin/filler/fiber composite is calculated using the Halpin-Tsai equation followed by a randomization procedure employing the averaging concept of Nielsen and Chen. Fiber bundles rather than single fibers are assumed as the reinforcing unit. Parameter ? representing the reinforcing efficiency is discussed for the case of stiffness in the direction transverse to the bundles orientation. Predicted values of the tensile modulus are in good agreement with experimental results for various compositions. Different resin/filler/fiber compositions are characterized using the calculated tensile modulus values together with merit indices introduced for the purpose of tailoring the composite toward minimized weight and material cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号