首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamics of countercurrent air/water flow in a 5 cm diameter reciprocating plate bubble column have been studied; the plates contained 14 mm diameter perforations and had a fractional open area of 0.57. The ranges of superficial velocities of air and water were respectively 0-0.99 cm/s and 0-3.95 cm/s. The stroke was in most cases 4.5 cm and the reciprocation frequency was in the range 0–5 Hz. The pressure drops were measured in the absence of reciprocation for single phase and two phase flow conditions. Pressure fluctuations and time-averaged pressure drops were measured with plate reciprocation under single and two-phase conditions. The results were described in terms of the simple quasi-steady state model; the effective orifice coefficients of the perforations were within the range 0.4 to 0.97 depending on the reciprocation conditions. The Sauter mean diameters of the bubbles decreased with agitation; they were about twice the values predicted from an earlier correlation developed for liquid-liquid systems. The gas holdups were also substantially greater than predicted from correlations based on liquid-liquid systems. Both these effects were explained as due to the tendency for bubbles to cluster in the plate region.  相似文献   

2.
利用水-空气系统对并流旋转床的气相压降进行了研究,并与逆流旋转床气相压降进行了对比。研究结果表明:并流较逆流旋转床的气相压降低;并流旋转床的气相压降随气体流量的增大而增大,随液体流量的增大而减小,随转速的增大明显降低;而逆流旋转床的气相压降随转速的增大明显升高。利用水吸收SO2的实验对并流旋转床的传质特性进行了研究。研究结果表明:并流旋转床填料层内各点的体积传质系数随着气体流量、液体流量和转速的增大而增大;填料层半径由70mm增大至90mm时,并流旋转床的体积传质系数迅速增大,而后并流旋转床的体积传质系数随半径的增大而减小。对并流和逆流旋转床填料层内体积传质系数进行了对比。结果表明:填料层半径由70mm增大至130mm时,并流旋转床的体积传质系数较逆流时大;当半径大于130mm后,逆流旋转床的体积传质系数大于并流旋转床的体积传质系数,且随半径增大而增大。根据研究结果,提出了降低系统压降的设想,即并流与逆流旋转床串联操作。  相似文献   

3.
本文对气—液两相流在振动筛板鼓泡塔中作垂直并流和逆流流动时的压降做了较系统的测定,并对其实验结果进行了较详细的分析与研究,结果发现逆流流动时压降比并流流动时低,而且在低AF值区域内压降波动小,有利于塔的稳定操作。  相似文献   

4.
Axial dispersion coefficients (E) in the liquid phase have been measured by unsteady tracer response methods in a 15 cm internal diameter reciprocating plate bubble column, using air and water in countercurrent and cocurrent flow. The operating variables studied were amplitude (0.6–1.27 cm) and frequency (0–5 Hz) of reciprocation, and the superficial velocities of the liquid and gas phases and the spacing between plates. Three types of plate were studied; conventional Karr-type plates with perforation diameters 1.43 cm, plates with smaller (0.635 cm) perforations, and single-perforation (doughnut) plates with internal diameter 7 cm. Measured values of E ranged from about 1 cm2/s to a maximum of 116 cm2/s. In general, the plates with 0.635 cm perforations gave the smallest values of E while the largest values of E were obtained with the doughnut plates, due to vortex ring shedding. The single liquid phase data for the three types of plate were approximately consistent with the correlation of Stevens and Baird (1990). The gas-liquid flow results were interpreted in terms of several different hydrodynamic effects.  相似文献   

5.
A 5-cm-diameter reciprocating plate extraction column has been operated in cocurrent flow. The pressure drop for water flow, and the local and average mass transfer products for the system acetic acid/kerosene/aqueous sodium hydroxide have been measured. Under well-agitated conditions, the mass average transfer product is predictable by a model, which is also applicable to data reported earlier by Karr for a 2.54-cm-diameter column.  相似文献   

6.
Pressure drop and oxygen desorption from water and four other aqueous CMC solutions were determined in a 5 cm diameter multistage bubble column with and without plate reciprocation. The plates were made from stainless steel wire screens of porosities greater than 0.62. The column pressure loss was found to increase with plate agitation, phase velocities and screen mesh number. A modified Reynolds number was proposed to permit a reasonable prediction of the pressure loss, based on the model of Noh and Baird (1984). At a specific power consumption, the present volumetric mass transfer coefficients arc considerably larger than those reported in earlier studies with sieve plates. The coefficients were correlated with specific power input, phase flow velocities and system physical properties.  相似文献   

7.
Conventional vacuum stripping to reduce the oxygen content of injection water for secondary recovery of oil is carried out in packed columns with the released gases and water flowing countercurrently; hence large column diameters (normal liquid load circa 100 m3/(m2h)) and foaming that requires the addition of defoaming agents. Measurements with cocurrent and countercurrent flow at the same flow rate produced practically identical mass transfer coefficients. With flooding excluded in cocurrent flow, columns can be operated with higher liquid loads than in countercurrent flow. In addition, nitrogen released in the top part of the packing is better utilized as stripping gas, and foam is withdrawn as soon as it increases the pressure drop.  相似文献   

8.
Oxygen absorption from air into water and axial dispersion in the aqueous phase have been measured in a 5 cm diameter reciprocating plate bubble column. The volumetric mass transfer coefficients in semi-batch conditions were found to increase with agitation and were correlated with the specific power input and air flow rate. Under countercurrent conditions, it was found that axial mixing had little effect and conditions approached plug flow. The volumetric mass transfer coefficients were correlated with specific power input, air and water flow rates. Mass transfer coefficients were estimated using holdup and bubble diameter results. Comparison of the coefficients with the literature values indicated that the bubble surfaces were partially mobile.  相似文献   

9.
Dispersed phase holdup and the bubble size distribution were measured in a reciprocating plate column under cocurrent upflow and countercurrent flow of gas and liquid phases. The response of the system to a variation in design and operating conditions was found similar to that for liquid–liquid contacting; the magnitude of response, however, differed significantly between them. Taking into consideration the dominant forces encountered in gas–liquid dispersions, the experimental data are satis–factorily correlated in terms of Froude, Weber and Gallileo numbers.  相似文献   

10.
Gas phase CO2 concentration profiles were measured in two sizes of bubble columns with different gas spargers and with the liquid phase (tap water) entrance or exit (cocurrent or countercurrent flow) at a certain height above the gas distributor. The region of high turbulence intensity near the sparger was locally separated from the region of high mass transfer rates in such columns. A modified back flow cell model was applied to describe the experimental data. The kL-values obtained from fitting the profiles agreed for both columns and, in addition, did not differ for cocurrent and countercurrent flow. This is in remarkable contrast to previous findings(10,11). The large influence of the gas sparger on the kL-values even in tall bubble columns was thus demonstrated. It is thought that this may probably be one of the reasons why correlations for prediction of kL differ so significantly.  相似文献   

11.
Hydrodynamics of a continuous cocurrent two-phase upflow reciprocating plate reactor (RPR) for homogeneously base-catalyzed methanolysis of sunflower oil was studied. Here, methanol constituted the dispersed phase and sunflower oil was the continuous phase. The measurements were performed in both the non-reactive (methanol–sunflower oil) and reactive (sunflower oil–methanol–KOH) systems. The main goal was to define the effects of the vibration intensity and the important reaction operating conditions on the pressure fluctuation at the reactor bottom, the power consumption, the dispersed phase holdup, the Sauter-mean drop diameter and the specific interfacial area. The power consumption under batch, single- and two-phase flow was proved to depend on the vibration intensity. The Sauter-mean drop diameter was found to depend on the specific power consumption in accordance with the turbulent model due to the turbulent energy dissipation in well-mixed regions around perforated plates. The simplified correlation of Kumar and Hartland could be used for estimating the Sauter-mean drop diameter. The energy dissipation due to reciprocating plate motion and the superficial dispersed phase velocity affected the dispersed phase holdup and the specific interfacial area. The present results are crucial for designing RPRs for application in continuous base-catalyzed methanolysis of vegetable oils.  相似文献   

12.
The purpose of this study is to explore the potential of using a general purpose CFD code to compute the characteristics of the flow field, and of the heat transfer augmentation in conduits with corrugated walls, encountered in commercial plate heat exchangers (PHE). The CFD code is used to simulate the performance of a PHE model comprised of stainless steel plates, following a herringbone design and assembled for single‐pass countercurrent flow. The code is validated by comparing the numerical results with experimental data on pressure drop and overall temperature differences acquired for the countercurrent flow of water at both sides of the model PHE. The limited data published in the literature are also in fairly good agreement with the results of the present study. It is shown that the CFD code is an effective and reliable tool for studying the effect of various geometrical configurations on the optimum design of a PHE.  相似文献   

13.
A stagewise hydrodynamic model, applying drop population balance equations derived from models for breakage and coalescence of drops in a countercurrent liquid-liquid extraction system, was developed to predict the drop size distribution and the holdup of the dispersed phase in a rotating impeller extraction column. The drop size distributions were obtained by taking the photographs of the dispersions at the same locations through the rectangular shaped glass box filled with distilled water. The experimental variables were the impeller speed and flow rates of the continuous and dispersed phases. The solutions of the model equations were obtained by performing the computer simulation and the optimum parameter values were determined. The results predicted by the model were in good agreement with the experimental results obtained from the present rotating impeller extraction column.  相似文献   

14.
J. Wang  H. Wang 《Fuel Cells》2012,12(6):989-1003
A generalized model developed by Wang was modified for flow field designs of the most common layout configurations with U‐type arrangement, including single serpentine, multiple serpentine, straight parallel, and interdigitated configurations. A direct and quantitative relationship was established among flow distribution, pressure drop, configurations, structures, and flow conditions. The model was used for a direct, systematic, and quantitative comparison of flow distributions and pressure drops among the most common layout configurations of interest. The straight parallel configuration had the lowest pressure drops but suffered the most possibility of the uneven flow distribution across the channels. The single serpentine had the best flow distribution but had the highest pressure drops. The flow distribution and the pressure drop in the multiple serpentine was between the straight parallel and the single serpentine. Finally, we suggested basic criteria of the flow field designs of bipolar plates for the industrial applications. This provides a practical guideline to evaluate how far a fuel cell is from design operating conditions, and measures how to improve flow distribution and pressure drop.  相似文献   

15.
A pilot‐scale (5.08 cm internal diameter) reciprocating plate column has been modified by the insertion of a brass test section for heat transfer measurements. Heat is supplied to liquid (water or a glucose solution) in the column from an electrical heating tape wound round the brass section, the walls of which contain thermocouples. Reciprocation of the plates in the column results in up to a seven‐fold improvement In heat transfer coefficient, to single phase liquids. Conditions are turbulent with oscillatory Reynolds numbers up to 20000. The effect of plate reciprocation is much less pronounced when the liquids are agitated by a stream of gas bubbles. The single‐phase heat transfer coefficients have been correlated for 5 different types of plates using approaches already available in the literature for turbulent systems in steady flow. The best‐fit oscillatory flow correlation differs slightly from the existing correlations for steady flow.  相似文献   

16.
Based on a self-established cold-flow experimental device, the pressure drop in a cocurrent downflow three-phase moving bed was investigated under a wide range of gas, liquid, and solid flow rates during dynamic and steady-state operation. The results showed that for the startup of the bed, since the first bed layer packed by fall-falling of particles had lower voidage, it would take at least one bed volume time to make the voidage in the bed reach the steady-state. Under steady-state conditions, the pressure drop increased with the increase of gas and liquid mass flow rates, liquid viscosity, and decreased with the increase of solid flow rate. Furthermore, it was found that the liquid distribution became more uniform due to particle movement. The experimental data obtained in this study was used to develop a correlation to predict the pressure drop in a three-phase moving bed with an average relative error of 9.32%.  相似文献   

17.
Pure carbon dioxide was absorbed into distilled water and sodium hydroxide solution, in cocurrent two phase annular flow in helically coiled tubes in order to measure physical and chemical mass transfer coefficients and interfacial areas. (k*La) was correlated by the pressure drop in the test sections and interfacial areas were found to vary with the liquid phase energy dissipation. According to a new theory, (k*L) has been shown to be a function of the root mean square vorticity near the interface. The root mean square vorticity has been related to the pressure drop, gas density, liquid flow rate and liquid velocity. The physical mass transfer coefficients theoretically predicted are in good agreement with experimental results.  相似文献   

18.
This paper investigates oil–water two‐phase flows in microchannels of 793 and 667 µm hydraulic diameters made of quartz and glass, respectively. By injecting one fluid at a constant flow rate and the second at variable flow rate, different flow patterns were identified and mapped and the corresponding two‐phase pressure drops were measured. Measurements of the pressure drops were interpreted using the homogeneous and Lockhart–Martinelli models developed for two‐phase flows in pipes. The results show similarity to both liquid–liquid flow in pipes and to gas–liquid flow in microchannels. We find a strong dependence of pressure drop on flow rates, microchannel material, and the first fluid injected into the microchannel.  相似文献   

19.
涓流床反应器中流区过渡的气相渗透率表征   总被引:3,自引:1,他引:2       下载免费PDF全文
由于Ergun方程可适用于气液间无相互作用的两相流动压降计算,并且由气相单相和气液两相并流下的气相压降比值可计算气相相对渗透率,因此,Ergun方程可用于涓流床中不同流区过渡和气液相互作用程度的表征。为检验这一方法的有效性,实验测定了空气-水体系在内径140mm有机玻璃塔中不同粒径玻璃珠(1.9、3.6、5.2、9.3mm)组成的床层压降和持液量。由于采用了压力传感器和电容层析成像仪,因此可测定脉冲流状态下的瞬态数据。通过压降的实验值与理论值比较,发现Ergun方程的适用范围有限,在没有进入脉冲流前先已失效,说明此时气液间作用已经相当显著。鉴于此,改用气液两相压降实验值代替理论值进行了气体渗透率的计算,发现不同气液流速和颗粒直径下出现脉冲流时的气体渗透率均低于0.08。  相似文献   

20.
对内径40mm的钢管和有机玻璃管内油水二相水平流动时的流型、摩擦压降特性进行了详细的实验研究,结果表明:油包水向水包油的转变发生在含水体积分数约0. 4时。随含水体积分数的增大,油水二相流的摩擦压降先是急剧减小,其后在含水体积分数大于0. 4时压降变化趋于平缓。油水二相流的摩擦压降受含水体积分数、管壁润湿特性、管壁粗糙度以及混合物流速的影响,当二相流体处于水包油状态时,钢管内的摩擦压降比有机玻璃管内的大;而当处于油包水时,有机玻璃管内的摩擦压降则比钢管内的摩擦压降大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号