首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning electron microscopy (SEM) has produced a wealth of novel images that have significantly complemented our perception of biological structure and function, derived initially from transmission electron microscopy (TEM) information. SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by reduced resolution in comparison with TEM. Recently, SEM resolution has been considerably improved by the advent of high-brightness sources used in field-emission instruments (FEISEM) which have produced resolution of around 1 nm, virtually equivalent to TEM “working resolution.” Here we review our findings in the use of FEISEM in the imaging of nuclear envelopes and their associated structures, such as nuclear pore complexes, and the relationships of structure and function. FEISEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance.  相似文献   

2.
3.
In this study backscattered electron (BSE) imaging was used to display cellular structures stained with heavy metals within an unstained resin by atomic number contrast in successively deeper layers. Balb/c 3T3 fibroblasts were cultured on either 13-mm discs of plastic Thermanox, commercially pure titanium or steel. The cells were fixed, stained and embedded in resin and the disc removed. The resin block containing the cells was sputter coated and examined in a field-emission scanning electron microscope. The technique allowed for the direct visualization of the cell undersurface and immediately overlying areas of cytoplasm through the surrounding embedding resin, with good resolution and contrast to a significant depth of about 2 μm, without the requirement for cutting sections. The fixation protocol was optimized in order to increase heavy metal staining for maximal backscattered electron production. The operation of the microscope was optimized to maximize the number of backscattered electrons produced and to minimize the spot size. BSE images were collected over a wide range of accelerating voltages (keV), from low values to high values to give ‘sections' of information from increasing depths within the sample. At 3–4 keV only structures a very short distance into the material were observed, essentially the areas of cell attachment to the removed substrate. At higher accelerating voltages information on cell morphology, including in particular stress fibres and cell nuclei, where heavy metals were intensely bound became more evident. The technique allowed stepwise ‘sectional’ information to be acquired. The technique should be useful for studies on cell morphology, cycle and adhesion with greater resolution than can be obtained with any light-microscope-based system.  相似文献   

4.
Wergin WP  Rango A  Foster J  Erbe EF  Pooley C 《Scanning》2002,24(5):247-256
For nearly 50 years, investigators using light microscopy have vaguely alluded to a unique type of snow crystal that has become known as an irregular snow crystal. However, the limited resolution and depth-of-field of the light microscope has prevented investigators from characterizing these crystals. In this study, a field-emission scanning electron microscope, equipped with a cold stage, was used to document the structural features, physical associations, and atmospheric metamorphosis of irregular snow crystals. The crystals appear as irregular hexagons, measuring 60 to 90 mm across, when viewed from the a-axis. Their length (c-axis) rarely exceeds the diameter. The irregular crystals are occasionally found as secondary particles on other larger forms of snow crystals; however, they most frequently occur in aggregates consisting of more than 100 irregular crystals. In the aggregates, the irregular crystals have their axes oriented parallel to one another and, collectively, tend to form columnar structures. Occasionally, these columnar structures exhibit rounded faces along one side, suggesting atmospheric metamorphoses during formation and descent. In extreme cases of metamorphoses, the aggregates would be difficult to distinguish from graupel. Frost, consisting of irregular crystals, has also been encountered, suggesting that atmospheric conditions that favor their growth can also occur terrestrially.  相似文献   

5.
Free-standing graphene sheets have been imaged by scanning transmission electron microscopy (STEM). We show that the discrete numbers of graphene layers enable an accurate calibration of STEM intensity to be performed over an extended thickness and with single atomic layer sensitivity. We have applied this calibration to carbon nanoparticles with complex structures. This leads to the direct and accurate measurement of the electron mean free path. Here, we demonstrate potentials using graphene sheets as a novel mass standard in STEM-based mass spectrometry.  相似文献   

6.
Hans Ris 《Scanning》1997,19(5):368-375
The nuclear pore complex (NPC) is a large macro-molecular assembly inserted into the nuclear envelope (NE). It controls the traffic of proteins, RNA, and RNA proteins between nucleus and cytoplasm. Its chemical composition and function are now intensively investigated in many organisms. To understand this unique membrane transport system, we must know the supramolecular organization of the NPC. In recent years, high-resolution field-emission scanning electron microscopy has made important contributions to our knowledge of NPC structure. It provided the first images of the complex and beautiful fish trap-like structure of its intranuclear surface, documented in this review. It also has provided the first images of a new intranuclear structure, a system of branching hollow cables connecting the nuclear interior with the NPCs at the nuclear surface. Most likely this is an intranuclear transport system, assuring efficient exchange between the nuclear interior and the NE, especially in large nuclei.  相似文献   

7.
Using transmission electron microscopy (TEM) and scanning force microscopy (SFM) together, it was possible to verify important structural features of a nanostructured bulk material such as the kp‐morphology in an ABC triblock copolymer. By applying suitable imaging techniques during the SFM measurements it was possible to determine the morphology without additional manipulation steps in between. In comparison, TEM investigations on this type of material usually require selective staining procedures prior to the measurement. Also electron beam damage is often encountered during TEM measurements especially if components such as poly(methacrylates) are present. In contrast, SFM measurements can be assumed not to significantly change the phase dimensions of the components.  相似文献   

8.
9.
The application of color cathodoluminescent scanning electron microscopy (CCL-SEM) for qualitative luminescence analysis of cholesterol, bilirubin, and protein in human gallstones was demonstrated. Images of these deposits (cholesterol, bilirubin, and protein) were formed in real colors (blue—cholesterol, red, orange—bilirubin, yellow, green—protein) in accordance with the cathodoluminescent spectrum for each control material. The other method described for transmission electron microscopy (TEM) of ultra-thin sections provides more detailed characterization of the ultrastructure of cholesterol-containing regions and their spatial interrelations with bilirubin-containing regions. Using CCL-SEM combined with TEM permits the receipt of more complete information about the chemical composition and ultrastructure of gallstones and may lead to more effective understanding of the pathogenesis of cholesterol cholelithiasis.  相似文献   

10.
Nanoscale scanning transmission electron tomography   总被引:2,自引:0,他引:2  
Electron tomography enables the study of complex three‐dimensional objects with nanometre resolution. In materials science, scanning transmission electron microscopy provides images with minimal coherent diffraction effects and with high atomic number contrast that makes them ideal for electron tomographic reconstruction. In this study, we reviewed the topic of scanning transmission electron microscopy‐based tomography and illustrated the power of the technique with a number of examples with critical dimensions at the nanoscale.  相似文献   

11.
The aim of this work was to assess the changes in the microstructure of hot‐deformed specimens made of alloys containing 46–50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 °C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.  相似文献   

12.
A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.  相似文献   

13.
A field-emission scanning electron microscope (FESEM) equipped with the standard secondary electron (SE) detector was used to image thin (70–90 nm) and thick (1–3 μm) sections of biological materials that were chemically fixed, dehydrated, and embedded in resin. The preparation procedures, as well as subsequent staining of the sections, were identical to those commonly used to prepare thin sections of biological material for observation with the transmission electron microscope (TEM). The results suggested that the heavy metals, namely, osmium, uranium, and lead, that were used for postfixation and staining of the tissue provided an adequate SE signal that enabled imaging of the cells and organelles present in the sections. The FESEM was also used to image sections of tissues that were selectively stained using cytochemical and immunocytochemical techniques. Furthermore, thick sections could also be imaged in the SE mode. Stereo pairs of thick sections were easily recorded and provided images that approached those normally associated with high-voltage TEM.  相似文献   

14.
Microscopical imaging of natural, unstressed draglines or of untreated bulk samples showed two types or threads with diameters of either approximately 1-2 microm or 4-5 microm, which could be identified as products of the minor or major ampullate glands. The threads had a circular profile in serial cross sections and are surrounded by a thin outer layer of a different material within the section. Such fibrillar configurations were also found in untreated threads or in the same serial sections of transmission electron microscopy (TEM) samples by means of the special technique of laser scanning microscopy. In TEM slides, numerous cavities with the same circular profile were detectable, and the length of these cavities is variable from 40-300 nm. The threads are oriented parallel and twisted around themselves to construct a double thread. In the interface between the two single threads, bridge-like structures are prominent. The single untreated thread consists of cylindrical fibers with a diameter of approximately 1-1.5 microm. Apparently more than eight fibers are within a thread and each fiber is composed of a great number of fibrils with a diameter of about 150 nm. The surface of threads is coated with a characteristic layer approximately 150-250 nm thick that contains glycoproteins. These were demonstrated for the first time by labeling with concanavalin A lectin-gold complex and are dependent on the diameter and length of the thread. The same substances could also be detected inside the single thread. The skin can be removed completely or partially by mechanical treatment, or by washing with phosphate-buffered saline or trypsin.  相似文献   

15.
We report a local crystal structure analysis with a high precision of several picometers on the basis of scanning transmission electron microscopy (STEM). Advanced annular dark-field (ADF) imaging has been demonstrated using software-based experimental and data-processing techniques, such as the improvement of signal-to-noise ratio, the reduction of image distortion, the quantification of experimental parameters (e.g., thickness and defocus) and the resolution enhancement by maximum-entropy deconvolution. The accuracy in the atom position measurement depends on the validity of the incoherent imaging approximation, in which an ADF image is described as the convolution between the incident probe profile and scattering objects. Although the qualitative interpretation of ADF image contrast is possible for a wide range of specimen thicknesses, the direct observation of a crystal structure with deep-sub-angstrom accuracy requires a thin specimen (e.g., 10 nm), as well as observation of the structure image by conventional high-resolution transmission electron microscopy.  相似文献   

16.
Cazaux J 《Scanning》2004,26(4):181-203
This paper is an attempt to analyse most of the complicated mechanisms involved in charging and discharging of insulators investigated by scanning electron microscopy (SEM). Fundamental concepts on the secondary electron emission (SEE) yield from insulators combined with electrostatics arguments permit to reconsider, first, the widespread opinion following which charging is minimised when the incident beam energy E0 is chosen to be equal to the critical energy E(o)2, where the nominal total yield delta(o) + eta(o) = 1. For bare insulators submitted to a defocused irradiation, it is suggested here that the critical energy under permanent irradiation EC2 corresponds to a range of primary electrons, R, and nearly equals the maximum escape depth of the secondary electrons, r. This suggestion is supported by a comparison between published data of the SEE yield delta(o) of insulators (short pulse experiments) and experimental results obtained from a permanent irradiation for EC2. New SEE effects are also predicted at the early beginning of irradiation when finely focused probes are used. Practical considerations are also developed, with specific attention given to the role of a contamination layer where a negative charging may occur at any beam energy. The role of the various time constants involved in charging and discharging is also investigated, with special attention given to the dielectric time constant, which explains the dose rate-dependent effects on the effective landing energy in the steady state. Numerical applications permit to give orders of magnitude of various effects, and several other practical consequences are deduced and illustrated. Some new mechanisms for the contrast reversal during irradiation or with the change of the primary electron (PE) energy are also suggested.  相似文献   

17.
We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.  相似文献   

18.
A simplified and standardized technique for close correlation between light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) is described. Perfusion and immersion fixed tissue specimens were embedded in Epon 812 and cut for conventional LM and TEM. The Epon blocks with remaining tissue were thereafter treated with epoxy solvent (ethanol-NaOH solution) for partial epoxy resin removal only (dissolving rate approx 33μm/h). The blocks with partially blotted tissue specimens were then critically point dried and gold coated for SEM. This method, in an easy way, allows repeated observations with LM, TEM and SEM with preserved fine structure and exact correlation. Since the technique is so simple and there is no need for special equipment the method can easily be adopted in all laboratories with basic SEM standards.  相似文献   

19.
20.
The standard scanning electron microscope method for examining surface structure using the secondary electron mode has unexpectedly revealed the internal ladder-type medulla of some animal hairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号