首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
利用纳米SiO2对氰酸酯树脂(CE)进行增韧改性,采用冲击强度、弯曲强度测试及扫描电子显微镜等手段研究了纳米SiO2含量对纳米SiO2/CE复合材料静态力学性能的影响;在此基础上,分别选用小分子偶联剂KH-560和大分子偶联剂SEA-171对纳米SiO2进行表面处理,进一步研究了界面结构对纳米SiO2/CE复合材料静态力学性能的影响,初步探讨了其作用机理。结果表明,纳米SiO2(尤其是以大分子偶联剂处理后的纳米SiO2)的加入提高了复合材料的冲击强度和弯曲强度。当SiO2质量分数为3%时,复合材料的冲击强度、弯曲强度达到最大,增幅分别为61.9%,44.2%。  相似文献   

2.
纳米SiO_2改性CE/PSt聚合物性能研究   总被引:1,自引:0,他引:1  
祝保林 《应用化工》2008,37(3):253-256
应用聚合物网络技术,通过异步合成法制备了氰酸酯(CE)/聚苯乙烯(PSt)网络聚合物,再以纳米(SiO2)改性,制得聚合物复合材料。采用红外光谱、透射电子显微镜等手段表征了该复合材料的微观结构,测定了其力学性能。结果表明,该三组分复合材料CE/PSt/3%SiO2,在CE/PSt为80/20时,其力学性能(冲击强度,弯曲强度)均达到最佳状态,分别比纯CE提高了82.58%和9.36%;添加3%纳米SiO2的聚合物比未添加SiO2的相比,其冲击强度再次提高了29.96%,弯曲强度提高了20.05%;红外光谱和透射电镜测试分析结果表明,组成网络的各复合材料组分之间未发生化学反应。互穿提高了复合材料承担载荷的能力,从而提高了CE的强度与韧性。  相似文献   

3.
CE/纳米SiO2复合材料的改性研究   总被引:1,自引:0,他引:1  
利用纳米SiO2对氰酸酯树脂(CE)进行改性。结果表明,适量的纳米SiO2可提高CE/纳米SiO2复合材料的冲击强度和弯曲强度;选用不同分子尺寸的偶联剂KH-560和SCA-3对纳米SiO2进行表面处理,扫描电镜(SEM)表明,纳米SiO2经偶联剂处理后CE/纳米SiO2复合材料的静态力学性能、动态力学性能都得到了不同程度的提高,特别是经SCA-3处理后的效果更加明显,偶联剂的加入改善了纳米SiO2在CE中的分散状态,使纳米SiO2与CE之间的界面结合强度进一步提高。  相似文献   

4.
偶联剂对SiO2/CE复合材料动态力学性能的影响   总被引:2,自引:0,他引:2  
利用纳米SiO2对氰酸酯树脂(CE)进行改性,研究了纳米SiO2的含量对纳米SiO2/CE复合材料动态力学性能的影响.在此基础上,分别选用小分子偶联剂KH-560和大分子偶联剂SEA-171对纳米SiO2进行表面处理,进一步研究了界面结构对纳米SiO2/氰酸酯树脂复合材料动态力学性能的影响,初步探讨了其作用机理.结果表明,经SEA-171表面处理后的3.0wt%纳米SiO2/CE复合材料的储能模量比纯CE可提高近4倍,损耗模量可提高2.4倍,力学损耗因子可提高1.8倍.  相似文献   

5.
纳米SiO_2界面处理对CE基复合材料静态力学性能的影响   总被引:1,自引:0,他引:1  
将纳米SiO2先用大分子偶联剂SEA–171处理,再与偶氮二异丁腈发生接枝反应而锚固上偶氮引发剂,并通过热失重和元素分析证明了引发剂在纳米SiO2表面的锚固。利用纳米SiO2对氰酸酯树脂(CE)进行改性,研究了纳米SiO2的含量对CE/纳米SiO2复合材料静态力学性能的影响;分析了纳米SiO2复合材料界面的结构特征,探讨了其作用机理。结果表明,纳米SiO2的加入提高了复合材料的冲击强度和弯曲强度。当M–1的添加量为3%时,复合材料的冲击强度增幅56.4%;弯曲强度增幅为44.2%。当M–2的添加量为4%时,复合材料的冲击强度增幅为89.0%;弯曲强度增幅为53.8%。经过锚固处理后,纳米SiO2颗粒团聚程度减小,在高分子有机相中的分散更均匀。  相似文献   

6.
祝保林  王君龙 《应用化工》2008,37(4):387-391
利用纳米SiO2对氰酸酯树脂(CE)进行改性,研究了纳米SiO2的含量对纳米SiO2/CE复合材料动态力学性能的影响;在此基础上,分别选用小分子偶联剂KH-560和大分子偶联剂SEA-171对纳米SiO2进行表面处理,进一步研究了界面结构对纳米SiO2/氰酸酯树脂复合材料动态力学性能的影响。结果表明,经SEA-171表面处理后的3.0%纳米SiO2/CE复合材料的储能模量比纯CE可提高近4倍,损耗模量可提高2.4倍,力学损耗因子可提高1.8倍。初步探讨了其作用机理。  相似文献   

7.
聚氨酯弹性体/纳米SiO2复合材料的力学性能研究   总被引:2,自引:0,他引:2  
刘少兵  程绍娟  张颖  贾林才 《塑料工业》2008,36(2):38-40,50
采用预聚体的方法制备了聚氨酯弹性体(PUE)/纳米SiO2复合材料,通过AJ(OH)3对纳米SiO2表面改性以及超声波分散的方法来提高纳米SiO2在PUE基体中的分散性,并考查了表面处理前后的纳米SiO2对PUE/纳米SiO2复合材料力学性能的影响.结果表明:改性后的纳米SiO2能均匀分散于PUE基体中,复合材料的力学性能明显提高;纳米SiO2的用量对PUE/纳米SiO2复合材料的力学性能影响较大,并且当纳米SiO2的质量分数为2%和3%时,复合材料的拉伸强度和撕裂强度分别达到最大.  相似文献   

8.
纳米SiO_2增强增韧聚丙烯界面模型的研究   总被引:5,自引:0,他引:5  
通过熔融共混法制备了聚丙烯 纳米SiO2 复合材料。利用扫描电镜(SEM)观察了纳米SiO2 在聚丙烯中的分散效果,结果表明纳米SiO2 团聚少,分散好。测试结果表明,当使用 2份纳米SiO2 时,聚丙烯 纳米SiO2 复合材料的力学性能最优:与纯PP相比,V形缺口冲击强度提高了 90 %,弯曲强度提高了 2 3%,拉伸强度提高了 5 %;最后,设想一种新的模型来解释聚丙烯 纳米SiO2 复合材料可能的微观界面结构  相似文献   

9.
采用模塑成型法制备氰酸酯树脂(CE)/纳米SiC复合材料,通过冲击强度和弯曲强度测试,分别考察了纳米SiC及其经偶联剂KH-560表面处理后对CE/纳米SiC复合材料力学性能的影响,并通过理论分析探讨了其作用机理。结果表明,纳米SiC能够有效地改善复合材料的力学性能,而经KH-560表面处理的纳米SiC能进一步提高复合材料的冲击强度和弯曲强度;当纳米SiC含量为1 %时,CE/纳米SiC和CE/纳米SiC/KH-560复合体系的冲击强度分别提高了73.66 %和86.26 %,弯曲强度分别提高了20.85 %和29.56 %。  相似文献   

10.
利用纳米SiO2对氰酸酯树脂(CE)进行改性,通过热失重分析(TGA)、摩擦磨损性能测试及扫描电镜(SEM)分析研究了纳米SiO2及其表面处理(分别选用小分子偶联剂KH-560和大分子偶联剂SEA-171)对纳米SiO2/CE复合材料热学及摩擦性能的影响,并初步探讨了其作用机理。结果表明,经SEA-171表面处理的纳米SiO2质量分数为3.0%时,其CE复合材料的热分解温度比纯CE树脂提高了将近75℃,摩擦系数降低了约25%,磨损率降低了77%。偶联剂的加入增加了纳米SiO2与CE树脂之间的界面粘结作用,因而复合材料的耐热性能和摩擦性能等得以提高。  相似文献   

11.
CE/nano-SiO_2复合材料的韧性和耐磨性研究   总被引:1,自引:0,他引:1  
采用模塑成型法制备CE/nano-SiO2复合材料,通过冲击强度和磨损率测试、透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征,分别考察了nano-SiO2及其表面处理对氰酸酯树脂韧性和耐磨性的影响。结果表明,nano-SiO2经偶联剂SEA-171表面处理后其改性效果明显优于未表面处理的nano-SiO2;相对纯CE,含3.00%nano-SiO2时,未表面处理和表面处理的nano-SiO2复合材料的冲击强度提高率分别为61.28%和83.58%;耐磨性提高率分别为51.16%和77.05%。  相似文献   

12.
通过熔融共混、模压成型方法,制备了纳米二氧化硅(SiO2)/不饱和聚酯(UP)复合材料,研究了纳米SiO2含量对复合材料的力学性能、动态力学性能和热膨胀性能的影响,采用SEM观察了复合材料的磨损面形貌。结果表明:当纳米SiO2含量为2.5%时,SiO2/UP复合材料的冲击强度和弯曲强度比纯UP分别提高了28.57%、8.43%;当纳米SiO2含量为3.5%时,SiO2/UP复合材料的玻璃化转变温度比纯UP提高了16℃;当纳米SiO2含量为0.5%时,SiO2/UP复合材料的热膨胀系数为41.367×10-6K-1;加入纳米SiO2后,SiO2/UP复合材料的磨损机理主要表现为磨粒磨损和黏着磨损。  相似文献   

13.
PP/纳米SiO2/PP-g-MAH复合材料的研究   总被引:4,自引:0,他引:4  
通过熔融共混法制备了PP/纳米SiO2/PP-g-MAH复合材料。研究了纳米SiO2和PP-g-MAH用量对PP基体性能的影响。通过力学性能测试、DSC热分析和SEM照片观测对PP/纳米SiO2和PP/纳米SiO2/PP-g-MAH复合材料的结构和性能进行了系统的研究。结果表明:2%的纳米SiO2和10%PP-g-MAH有较好的协同效应。可以使复合材料的缺口冲击强度提高80%,拉伸强度提高12.5%。DSC表明,纳米SiO2对PP基体有异相成核作用。SEM电镜分析得出,经表面改性的纳米SiO2均匀地分散于PP基体中,从而起到良好的改性作用。  相似文献   

14.
偶联剂KH-560对CE/纳米-SiO_2复合材料凝胶性的影响   总被引:2,自引:0,他引:2  
张智峰  张文根  张学英 《应用化工》2010,39(3):347-349,357
采用高速均质剪切法制备CE/纳米-SiO2复合材料,通过测试凝胶化时间和粘度变化,考察了偶联剂KH-560表面处理纳米-SiO2对复合材料凝胶性的影响。结果表明,KH-560能够有效提高复合材料的凝胶特性;在90℃时,相对未处理的CE/纳米-SiO2复合材料,经KH-560表面处理后的CE/纳米-SiO2复合材料粘度提高率为15.99%,凝胶化时间缩短率为11.34%。  相似文献   

15.
纳米二氧化硅(SiO2)经表面改性后,制备PP/Oil-SEBS/nano—SiO2共混体系材料。研究了不同的纳米SiO2含量下共混体系的DSC熔融峰和结晶峰,同时考察其的力学性能种流变性能。结果表明:随着SiO2含量的增大,熔融峰基本不变,结晶峰在纳米SiO2含量较大时略为增加,体系的拉伸强度、冲击强度先增大后减小.硬度则先减小后增大,熔体流动速率略有下降。  相似文献   

16.
以双马来酰亚胺树脂(BMI)预聚体改性氰酸酯树脂(CE)(CE/BMI)作为基体树脂,以氧化石墨烯(GO)作为增强体,通过浇铸成型工艺制备了CE/BMI/GO复合材料。研究了GO的质量分数对CE/BMI/GO复合材料力学和摩擦学性能的影响。结果表明,GO的加入有益于复合材料力学性能和摩擦学性能的提高。GO的质量分数为0.8%时复合材料获得最好的韧性和耐磨性。对比基体树脂,CE/BMI/GO复合材料的冲击强度和弯曲强度分别提高了33.6%和27.6%;摩擦系数和磨损率分别降低了22.5%和77.6%。  相似文献   

17.
偶联剂SCA-3对CE/nano-SiO_2复合材料胶粘性的影响   总被引:2,自引:1,他引:1  
采用高速均质剪切法制备了氰酸酯树脂(CE)/nano-SiO2复合材料,考察了经偶联剂(SCA-3)表面处理过的nano-SiO2对复合材料黏度和凝胶时间的影响。结果表明:SCA-3能够有效提高复合材料的黏度;当温度为100℃时,与未经偶联剂表面处理过的nano-SiO2/CE复合材料相比,经SCA-3表面处理后的nano-SiO2/CE复合材料,其黏度相对提高率为13.42%,凝胶时间相对减小率为8.17%。  相似文献   

18.
为提高聚酰胺6(PA6)的抗磨损性能,采用原位聚合法合成并制备了PA6/纳米SiO2复合材料,研究了该材料的抗磨损性能、耐热性能、力学性能和结晶性能。结果表明,原位聚合PA6/纳米SiO2复合材料具有良好的抗磨损特性,当纳米SiO2含量为1 %(质量分数,下同)时,复合材料抗磨损性能最佳,该材料的热变形温度、拉伸强度、弹性模量和断裂伸长率均明显高于原料PA6;当纳米SiO2含量为3 %时,复合材料热变形温度由原料PA6的64.6 ℃提高到130 ℃。采用原位聚合母料法制备的PA6/纳米SiO2复合材料同样具有理想的抗磨损性能,并可获得更好的力学性能,且可大幅降低材料制备成本。  相似文献   

19.
用A171和KH550 2种硅烷偶联剂对纳米SiO2进行分散处理,然后用注射成型法制备了纳米SiO2/尼龙1010复合材料。研究了改性处理纳米SiO2对尼龙1010复合材料的结晶性能、力学性能以及摩擦学性能的影响。结果表明:纳米SiO2表面的改性处理均使尼龙1010基体的结晶度降低,而拉伸强度、硬度和耐磨性提高。A171处理纳米SiO2/尼龙1010复合材料的断裂伸长率大于纯尼龙1010。改性处理纳米SiO2使尼龙1010复合材料的摩擦因数降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号