首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Inlet fogging has been widely noticed in recent years as a method of gas turbine air inlet cooling for increasing the power output in gas turbines and combined cycle power plants. The effects of evaporative cooling on gas turbine performance were studied in this paper. Evaporative cooling process occurs in both compressor inlet duct (inlet fogging) and inside the compressor (wet compression). By predicting the reduction in compressor discharge air temperature, the modeling results were compared with the corresponding results reported in literature and an acceptable difference percent point was found in this comparison. Then, the effects of both evaporative cooling in inlet duct, and wet compression in compressor, on the power output, turbine exhaust temperature, and cycle efficiency of 16 models of gas turbines categorized in four A–D classes of power output, were investigated. The results of this analysis for saturated inlet fogging as well as 1% and 2% overspray are reported and the prediction equations for the amount of actual increased net power output of various gas turbine nominal power output are proposed. Furthermore the change in values of physical parameters and moving the compressor operating point towards the surge line in compressor map was investigated in inlet fogging and wet compression processes.  相似文献   

2.
Gas turbine (GT) output power is affected by temperature, gas turbine inlet air‐cooling systems are used to solve this. In the present work, the effect of using absorption chiller in GT power plants for two regions in Iran, namely Tabas with hot–dry and Bushehr with hot–humid climate conditions is conducted. Therefore, output power, first and second law efficiencies, environmental and electrical costs for GT power plant with inlet air cooler are calculated for two mentioned regions, respectively. Results show that using this system in hot months of a year is economical. In addition, using absorption chiller leads to increasing the output power 11.5 and 10.3%, for Tabas and Bushehr cities, respectively. Moreover, by using this method the second law efficiency is increased to 22.9 and 29.4% for Tabas and Bushehr cities, respectively. In addition, the cost of electricity production for Tabas and Bushehr cities decreases to about 5.04 and 2.97%, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25-100 MW, the inlet air cooling using a TES system increased the power output in the range of 3.9-25.7%, increased the efficiency in the range 2.1-5.2%, while increased the payback period from about 4 to 7.7 years.  相似文献   

4.
The gas turbine performance is highly sensitive to the compressor inlet temperature. The output of gas turbine falls to a value that is less than the rated output under high temperature conditions. In fact increase in inlet air temperature by 1°C will decrease the output power by 0.7% approximately. The solution of this problem is very important because the peak demand season also happens in the summer. One of the convenient methods of inlet air cooling is evaporating cooling which is appropriate for warm and dry weather. As most of the gas turbines in Iran are installed in such ambient conditions regions, therefore this method can be used to enhance the performance of the gas turbines. In this paper, an overview of technical and economic comparison of media system and fog system is given. The performance test results show that the mean output power of Frame‐9 gas turbines is increased by 11 MW (14.5%) by the application of media cooling system in Fars power plant and 8.1 MW (8.9%) and 9.5 MW (11%) by the application of fog cooling system in Ghom and Shahid Rajaie power plants, respectively. The total enhanced power generation in the summer of 2004 was 2970, 1701 and 1340 MWh for the Fars, Ghom and Shahid Rajaie power plants, respectively. The economical studies show that the payback periods are estimated to be around 2 and 3 years for fog and media systems, respectively. This study has shown that both methods are suitable for the dry and hot areas for gas turbine power augmentation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Gas turbine inlet air cooling technologies (GTIAC), mainly including chilling with LiBr/water absorption chiller and fogging as well, are being used during hot seasons to augment the power output. To evaluate the general applicability of inlet air cooling for gas–steam combined cycle power plant (GTCCIAC), parameters such as efficiency ratio, profit ratio and relative payback period were defined and analyzed through off-design performances of both gas turbine and inlet air cooling systems. An analytical method for applicability evaluation of GTCCIAC with absorption chiller (inlet chilling) and saturated evaporative cooler (inlet fogging) was presented. The applicability study based on typical off-design performances of the components in GTCCIAC shows that, the applicability of GTCCIAC with chilling and fogging depends on the design economic efficiency of GTCC power plant. In addition, it relies heavily on the climatic data and the design capacity of inlet air cooling systems. Generally, GTCCIAC is preferable in the zones with high ambient air temperature and low humidity. Furthermore, it is more appropriate for those GTCC units with lower design economic efficiency. Comparison of the applicability between chilling and fogging shows that, inlet fogging is superior in power efficiency at ta = 15–20 °C though it gains smaller profit margin than inlet chilling. GTCC inlet chilling with absorption chiller is preferable in the zones with ta > 25 °C and RH > 0.4.  相似文献   

6.
A novel hydrogen-fueled power plant with inherent CO2 capture based on calcium looping process is proposed in this paper. The analyzed system has been evaluated from the energy and exergy points of view, it enables determination of the contribution of main component to the total exergy loss. The results show that energy and exergy efficiencies of the system are 42.7% and 42.25% respectively, combustion chamber and regenerator are responsible for large exergy destructions, mainly due to irreversibilities associated with the combustion reactions, they have great potential for system efficiencies improvements. The effects of various air pressure ratios and gas turbine inlet temperatures on the system thermodynamic performance are also presented. The thermodynamic efficiencies increase with the increase in air pressure ratios and gas turbine inlet temperatures.  相似文献   

7.
In this paper energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system has been performed. Applying the first and second laws of thermodynamics and economic analysis, simultaneously, has made a powerful tool for the analysis of energy systems such as CCHP systems. The system integrates air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator (HRSG) and absorption chiller to produce cooling, heating and power. In fact, the first and second laws of thermodynamics are combined with thermoeconomic approaches. Next, computational analysis is performed to investigate the effects of below items on the fuel consumption, values of cooling, heating and net power output, the first and second laws efficiencies, exergy destruction in each of the components and total cost of the system. These items include the following: air compressor pressure ratio, turbine inlet temperature, pinch temperatures in dual pressure HRSG, pressure of steam that enters the generator of absorption chiller and process steam pressure. Decision makers may find the methodology explained in this paper very useful for comparison and selection of CCHP systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
用资源的观点评价能源利用项目   总被引:3,自引:0,他引:3  
在评价能源动力工程项目时应该采用综合的评价方法,考虑技术、经济和环境等因素。叙述了一种基于总资源系统的综合评价方法,将生产中消耗的(包括污染掉的)空气、水和燃料等都折算成资源,并从社会平均边际削减成本的角度计算了利用资源对社会造成的外部成本。指出,计算资源的价值时必须包括其外部成本,并计入最终的总成本。文中还陈述了综合评价方法的原理,并以某燃天然气的燃气轮机联合循环热电联产系统为例子,与燃煤热电联产系统进行了比较。  相似文献   

9.
集成熔盐储热是有望大幅提高燃煤发电机组运行灵活性的有效手段。本文针对集成熔盐储热的燃煤发电系统,建立了变工况模型与火用分析模型,针对以再热蒸汽为热源且加热熔盐后分别返回低压缸入口和凝汽器的两种熔盐储热系统,研究获得了燃煤机组运行灵活性和能耗特性的变化规律。结果表明:采用不同储热系统构型对燃煤机组的灵活性与能耗特性的影响差异明显。集成两种熔盐储热系统,燃煤机组的最低工作负荷从额定负荷的30%分别降低到20.58%与24.43%,系统火用损失则分别增加了48.67 MW与18.7 MW。  相似文献   

10.
11.
This article deals with external cost of electricity generation in Baltic States. The costs of electricity generation and distribution are the most important criteria shaping decisions within the electricity system. However, the external cost due to air pollution should also be adequately taken into account seeking to promote new and clean technologies for electricity generation. External costs of electricity generation in the main power plants burning fossil fuel were calculated based on ExternE methodology for Baltic States during EU Framework 6 project CASES. The article presents the first results of external cost of electricity generation in Baltic States.  相似文献   

12.
The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.  相似文献   

13.
A refrigeration system removing heat from a cold storage is analyzed to determine exergetic losses of the thermodynamic cycle and the power needed for the flows of the refrigerant and the media transferring heat at a specified temperature. How much the overall power consumption of the system can be decreased by lowering the condensing temperature, by either increasing the external heat transfer at the condenser or by lowering the inlet temperature of the heat exchanging media, is investigated. The latter depends on the relative humidity of the air. The performance of air, water and evaporative-cooled condensers are evaluated as a function of relative humidity of the ambient air. It is shown that the evaporative condenser operates at the lowest condensing temperature and, therefore, the least power consumption of the total system is achieved. Wetting the condenser with water requires only 1% of the overall power consumption but reduces the consumption by 30% as compared with the air-cooled condenser. Precooling the air by a water spray before it enters an air-cooled condenser is of benefit only at relative humidities of 65% or less. At other state conditions of the air, a higher power consumption will result. Lowering the temperature of the surroundings lowers Prev and the second law efficiency must be properly defined so that, for cases of lowest power consumption, highest values of the efficiency will be obtained. Means for the design of least power-consuming air-conditioners are briefly stated, as well as the advantages of evaporative condensers for fog-free operation.  相似文献   

14.
Natural disasters are increasing in frequency and cost throughout the United States. Long term power outages frequently result from natural disasters, which leads to higher reliance on inefficient and cost ineffective gasoline or diesel powered generators to meet energy needs. The development of deployable renewable energy-powered microgrids as mobile power sources would allow energy demands to be met in portable and effective way, while reducing diesel fuel consumption. Characterizing system performance of renewable energy-powered microgrids prior to deployment would allow a future system to be appropriately sized to meet all required electrical loads at a given intermittent diesel generator operational frequency. Appropriate sizing of renewable energy powered microgrids and backup diesel generators would decrease system operation and transportation costs as well as define the appropriate amount of fuel to be kept on hand. This paper focuses on developing figures that represent the quantity of external AC or DC load a microgrid could supply as a function of intermittent diesel generator operational frequency. Typical meteorological year 3 (TMY3) data from 217 Class I locations throughout the United States were inserted into an operational frequency prediction model to characterize the quantity of external AC and DC load the system could supply at intermittent diesel generator operational frequencies of 1%, 5%, 10%, 25%, and 50%. Ordinary block Kriging analysis was performed to interpolate AC and DC load power between TMY3 Class I locations for each diesel generator operating frequency. Figures representing projected AC and DC external load were then developed for each diesel generator operating frequency.  相似文献   

15.
The current study deals with the thermodynamic modeling of an innovative integrated plant based on solid oxide fuel cell (SOFC) with liquefied natural gas (LNG) cold energy supply. For the suggested innovative plant the energy, and exergy simulations are fully extended and the plant comprehensively analyzed. According to mathematical simulations of the proposed plant, a MATLAB code has been extended. The results indicate that under considered initial conditions, the efficiencies of SOFC and net power generation calculated 58% and 78%, respectively and the CO2-capture rate is obtained 79 kg/h. This study clearly shows that the integrated system reached high efficiency while having zero emissions. In addition, the efficiencies and net amount of power generation, cooling or heating output and SOFC power generation are discussed in detail as a function of different variables such utilization factor, air/fuel ratio, or SOFC inlet temperature. For enhancing the power production efficiency of SOFC, the net electricity, and CCHP exergy efficiency the plant should run in higher utilization factor and lower air/fuel ration also it's important to approximately set SOFC temperature to its ideal temperature.  相似文献   

16.
Compressed air energy storage (CAES) systems usually operate under off‐design conditions due to load fluctuations, environmental factors, and performance characteristics of the system. In order to optimize design and operation of CAES systems, it is significant to study off‐design performance. The expansion process plays an important role in the whole system. The main objective of this study is to explore the off‐design characteristics and optimization strategy of the multistage expansion process of CAES systems with thermal storage. Two kinds of off‐design operating modes, which are equal‐power‐ratio (EPR) operation and optimizing variable stator vane rotation angle (OVRA) operation, are proposed and compared for the first time. Correlation between key parameters such as total output power ratio, exergy efficiency, outlet air/water temperature versus mass flow rate ratio, and inlet pressure are revealed. Furthermore, optimal operation principles are obtained. The primary optimizing operation principle is to optimize the isentropic efficiencies of low‐pressure stages to improve the whole efficiency of expansion process. Lastly, the optimized regulating law for variable stator vane is expressed in a polynomial form.  相似文献   

17.
This study provides a computational analysis to investigate the effects of cycle pressure ratio, turbine inlet temperature (TIT), and ambient relative humidity (φ) on the thermodynamic performance of an indirect intercooled reheat regenerative gas turbine cycle with indirect evaporative cooling of the inlet air and evaporative aftercooling of the compressor discharge. Combined first and second‐law analysis indicates that the exergy destruction in various components of gas turbine cycles is significantly affected by compressor pressure ratio and turbine inlet temperature, and is not at all affected by ambient relative humidity. It also indicates that the maximum exergy is destroyed in the combustion chamber; which represents over 60% of the total exergy destruction in the overall system. The net work output, first‐law efficiency, and the second‐law efficiency of the cycle significantly varies with the change in the pressure ratio, turbine inlet temperature and ambient relative humidity. Results clearly shows that performance evaluation based on first‐law analysis alone is not adequate, and hence more meaningful evaluation must include second‐law analysis. Decision makers should find the methodology contained in this paper useful in the comparison and selection of gas turbine systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, an energy and exergy analysis is performed on four different wind power systems, including both horizontal and vertical axis wind turbines. Significant variability in turbine designs and operating parameters are encompassed through the selection of systems. In particular, two airfoils (NACA 63(2)-215 and FX 63-137) commonly used in horizontal axis wind turbines are compared with two vertical axis wind turbines (VAWTs). A Savonius design and Zephyr VAWT benefit from operational attributes in wind conditions that are unsuitable for airfoil type designs. This paper analyzes each system with respect to both the first and second laws of thermodynamics. The aerodynamic performance of each system is numerically analyzed by computational fluid dynamics software, FLUENT. A difference in first and second law efficiencies of between 50 and 53% is predicted for the airfoil systems, whereas 44–55% differences are predicted for the VAWT systems. Key design variables are analyzed and the predicted results are discussed. The exergetic efficiency of each wind turbine is studied for different geometries, design parameters and operating conditions. It is shown that the second law provides unique insight beyond a first law analysis, thereby providing a useful design tool for wind power development.  相似文献   

19.
In this study, we investigate biomass-based hydrogen production through exergy and exergoeconomic analyses and evaluate all components and associated streams using an exergy, cost, energy and mass (EXCEM) method. Then, we define the hydrogen unit cost and examine how key system parameters affect the unit hydrogen cost. Also, we present a case study of the gasification process with a circulating fluidized bed gasifier (CFBG) for hydrogen production using the actual data taken from the literature. We first calculate energy and exergy values of all streams associated with the system, exergy efficiencies of all equipment, and determine the costs of equipment along with their thermodynamic loss rates and ratio of thermodynamic loss rate to capital cost. Furthermore, we evaluate the main system components, consisting of gasifier and PSA, from the exergoeconomic point of view. Moreover, we investigate the effects of various parameters on unit hydrogen cost, such as unit biomass and unit power costs and hydrogen content of the syngas before PSA equipment and PSA hydrogen recovery. The results show that the CFBG system, which has energy and exergy efficiencies of 55.11% and 35.74%, respectively, generates unit hydrogen costs between 5.37 $/kg and 1.59 $/kg, according to the internal and external parameters considered.  相似文献   

20.
In this study, geothermal resources in Kutahya-Simav region having geothermal water at a temperature suitable for power generation is considered. The study is aimed to yield the method of the most effective use of the geothermal resource and a rational thermodynamic comparison of various cycles for a given resource. Maximum first law efficiencies vary between 6.9 to 10.6% while the second law efficiencies vary between 38.5 to 59.3% depending on the cycle considered. The maximum power output, the first law, and the second law efficiencies are obtained for Kalina cycle followed by combined cycle and binary cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号