首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The limited fossil fuel reserves and severe environmental pollution have pushed studies on improving the engine performance. This paper investigated the effect of hydrogen-oxygen blends (hydroxygen) addition on the performance of a spark-ignited (SI) gasoline engine. The test was performed on a modified SI engine equipped with a hydrogen and oxygen injection system. A hybrid electronic control unit was adopted to govern the opening and closing of hydrogen, oxygen and gasoline injectors. The standard hydroxygen with a fixed hydrogen-to-oxygen mole fraction of 2:1 was applied in the experiments. Three standard hydroxygen volume fractions in the total intake gas of 0%, 2% and 4% were adopted. For a given hydroxygen blending level, the gasoline injection duration was adjusted to enable the excess air ratio of the fuel-air mixtures to increase from 1.00 to the engine lean burn limit. Besides, to compare the effects of hydroxygen and hydrogen additions on the performance of a gasoline engine, a hydrogen-enriched gasoline engine was also run at the same testing conditions. The test results showed that the hydroxygen-blended gasoline engine produced higher thermal efficiency and brake mean effective pressure than both of the original and hydrogen-blended gasoline engines at lean conditions. The engine cyclic variation was eased and the engine lean burn limit was extended after the standard hydroxygen addition. The standard hydroxygen enrichment contributed to the decreased HC and CO emissions. CO from the standard hydroxygen-enriched gasoline engine is also lower than that from the hydrogen-enriched gasoline engine. But NOx emissions were increased after the hydroxygen addition.  相似文献   

2.
The addition of hydrogen is an effective way for improving the gasoline engine performance at lean conditions. In this paper, an experiment aiming at studying the effect of hydrogen addition on combustion and emissions characteristics of a spark-ignited (SI) gasoline engine under various loads and lean conditions was carried out. An electronically controlled hydrogen port-injection system was added to the original engine while keeping the gasoline injection system unchanged. A hybrid electronic control unit was developed and applied to govern the spark timings, injection timings and durations of hydrogen and gasoline. The test was performed at a constant engine speed of 1400 rpm, which could represent the engine speed in the typical city-driving conditions with a heavy traffic. Two hydrogen volume fractions in the total intake of 0% and 3% were achieved through adjusting the hydrogen injection duration according to the air flow rate. At a specified hydrogen addition level, gasoline flow rate was decreased to ensure that the excess air ratios were kept at 1.2 and 1.4, respectively. For a given hydrogen blending fraction and excess air ratio, the engine load, which was represented by the intake manifolds absolute pressure (MAP), was increased by increasing the opening of the throttle valve. The spark timing for maximum brake torque (MBT) was adopted for all tests. The experimental results demonstrated that the engine brake mean effective pressure (Bmep) was increased after hydrogen addition only at low load conditions. However, at high engine loads, the hybrid hydrogen–gasoline engine (HHGE) produced smaller Bmep than the original engine. The engine brake thermal efficiency was distinctly raised with the increase of MAP for both the original engine and the HHGE. The coefficient of variation in indicated mean effective pressure (COVimep) for the HHGE was reduced with the increase of engine load. The addition of hydrogen was effective on improving gasoline engine operating instability at low load and lean conditions. HC and CO emissions were decreased and NOx emissions were increased with the increase of engine load. The influence of engine load on CO2 emission was insignificant. All in all, the effect of hydrogen addition on improving engine combustion and emissions performance was more pronounced at low loads than at high loads.  相似文献   

3.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

4.
Regarding the limited fossil fuel reserves, the renewable ethanol has been considered as one of the substitutional fuels for spark ignition (SI) engines. But due to its high latent heat, ethanol is usually hard to be well evaporated to form the homogeneous fuel–air mixture at low temperatures, e.g., at idle condition. Compared with ethanol, hydrogen possesses many unique combustion and physicochemical properties that help improve combustion process. In this paper, the performance of a hydrogen-enriched SI ethanol engine under idle and stoichiometric conditions was investigated. The experiment was performed on a modified 1.6 L SI engine equipped with a hydrogen port-injection system. The ethanol was injected into the intake ports using the original engine gasoline injection system. A self-developed hybrid electronic control unit (HECU) was adopted to govern the opening and closing of hydrogen and ethanol injectors. The spark timing and idle bypass valve opening were governed by the engine original electronic control unit (OECU), so that the engine could operate under its original target idle speed for each testing point. The engine was first fueled with the pure ethanol and then hydrogen volume fraction in the total intake gas was gradually increased through increasing hydrogen injection duration. For a specified hydrogen addition level, ethanol flow rate was reduced to keep the hydrogen–ethanol–air mixture at stoichiometric condition. The test results showed that hydrogen addition was effective on reducing cyclic variations and improving indicated thermal efficiency of an ethanol engine at idle. The fuel energy flow rate was reduced by 20% when hydrogen volume fraction in the intake rose from 0% to 6.38%. Both flame development and propagation periods were shortened with the increase of hydrogen blending ratio. The heat transfer to the coolant was decreased and the degree of constant volume combustion was enhanced after hydrogen addition. HC and CO emissions were first reduced and then increased with the increase of hydrogen blending fraction. The acetaldehyde emission from the hydrogen-enriched ethanol engine is lower than that from the pure ethanol engine. However, the addition of hydrogen tended to increase NOx emissions from the ethanol engine at idle and stoichiometric conditions.  相似文献   

5.
Starting a spark-ignited engine with the gasoline-hydrogen mixture   总被引:1,自引:0,他引:1  
Because of the increased fuel-film effect and dropped combustion temperature, spark-ignited (SI) gasoline engines always expel large amounts of HC and CO emissions during the cold start period. This paper experimentally investigated the effect of hydrogen addition on improving the cold start performance of a gasoline engine. The test was carried out on a 1.6-L, four-cylinder, SI engine equipped with an electronically controlled hydrogen injection system. A hybrid electronic control unit (HECU) was applied to control the opening and closing of hydrogen and gasoline injectors. Under the same environmental condition, the engine was started with the pure gasoline and gasoline-hydrogen mixture, respectively. After the addition of hydrogen, gasoline injection duration was adjusted to ensure the engine to be started successfully. All cold start experiments were performed at the same ambient, coolant and oil temperatures of 17 °C. The test results showed that cylinder and indicated mean effective pressures in the first cycle were effectively improved with the increase of hydrogen addition fraction. Engine speed in the first 20 start cycles increased with hydrogen blending ratio. However, in later cycles, engine speed varied only a little with and without hydrogen addition due to the adoption of close loop control on engine speed. Because of the low ignition energy and high flame speed of hydrogen, both flame development and propagation durations were shortened after hydrogen addition. HC and CO emissions were dropped markedly after hydrogen addition due to the enhanced combustion process. When the hydrogen flow rate increased from 0 to 2.5 and 4.3 L/min, the instantaneous peak HC emissions were sharply reduced from 57083 to 17850 and 15738 ppm, respectively. NOx emissions were increased in the first 5 s and then reduced later after hydrogen addition.  相似文献   

6.
The paper studied the effect of syngas addition on performance of a gasoline engine at lean conditions. The engine ran at 1800 rpm and a manifolds absolute pressure of 61.5 kPa. The spark timing for the maximum brake torque was adopted for each testing point. The syngas volume fraction in the total intake gas was fixed at 0% and 2.5%. The test results showed that peak cylinder pressure and indicated thermal efficiency were enhanced after the syngas enrichment. Flame development and propagation durations of the 2.5% syngas-blended engine were reduced by 7.2 and 5.7 °CA, compared with those of the original engine at an excess air ratio of 1.36. The coefficient of variation in the indicated mean effective pressure showed a noticeable decrease after the syngas addition. CO and NOx emissions were slightly increased with the syngas enrichment. HC emissions were first reduced and then increased after the syngas blending.  相似文献   

7.
Lean combustion is an effective way for improving the spark-ignited (SI) engine performance. Unfortunately, due to the narrow flammability of gasoline, the pure gasoline-fueled engines sometimes suffer partial burning or misfire at very lean conditions. Hydrogen has many excellent combustion properties that can be used to extend the gasoline engine lean burn limit and improve the gasoline engine performance at lean conditions. In this paper, a 1.6 L port fuel injection gasoline engine was modified to be a hybrid hydrogen–gasoline engine (HHGE) fueled with the hydrogen–gasoline mixture by mounting an electronically controlled hydrogen injection system on the intake manifolds while keeping the original gasoline injection system unchanged. A self-developed hybrid electronic control unit (HECU) was used to flexibly adjust injection timings and durations of gasoline and hydrogen. Engine tests were conducted at 1400 rpm and a manifolds absolute pressure (MAP) of 61.5 kPa to investigate the performance of an HHGE at lean burn limits. Three hydrogen volume fractions in the total intake gas of 1%, 3% and 4.5% were adopted. For a specified hydrogen volume fraction, the gasoline flow rate was gradually reduced until the engine reached the lean burn limit at which the coefficient of variation in indicated mean effective pressure (COVimep) was 10%. The test results showed that COVimep at the same excess air ratio was obviously reduced with the increase of hydrogen enrichment level. The excess air ratio at the lean burn limit was extended from 1.45 of the original engine to 2.55 of the 4.5% HHGE. The engine brake thermal efficiency, CO, HC and NOx emissions at lean burn limits were also improved for the HHGE.  相似文献   

8.
Producing the syngas by onboard ethanol steam reforming is an effective way for recovering the exhaust heat in the engine tailpipe. Besides, as hydrogen is contained in the syngas, the addition of syngas is also capable of improving engine combustion and emissions characteristics. In this paper, an experimental study was carried out on a four-cylinder 1.6 L spark-ignited engine to explore the effect of syngas addition on the engine performance. A fuel reforming reactor with the copper based catalysts was designed and mounted on the engine tailpipe, so that the ethanol solution could be decomposed to be syngas which is mainly composed of hydrogen and carbon monoxide when the catalysts were heated by the exhaust gas. The intake manifolds was also modified to permit syngas to be injected into the fourth cylinder of the engine. The engine was run at 1800 rpm and a manifolds absolute pressure of 61.5 kPa. The spark timing for the maximum brake torque was adopted for each testing point. The syngas volume fraction in the total intake gas was gradually increased from 0% to 2.43%. Meanwhile, the gasoline injection duration governing by a hybrid electronic control unit was adjusted to keep the excess air ratio of the fuel-air mixture in the fourth cylinder at about 1.00. The experimental results demonstrated that the syngas volume flow rate was markedly enhanced from 90 to 240 L/h when the feedstock flow rate was increased from 18 to 54 mL/min. The peak ethanol conversion efficiency reached 81.16% at a feedstock flow rate of 36 mL/min. The hydrogen concentration was increased whereas carbon monoxide concentration was decreased in the syngas with the increase of the feedstock supply. The engine indicated thermal efficiency was raised to be 39.01% at the syngas volume fraction of 2.43%. The flame development and propagation durations were shortened; HC and NOx emissions were reduced whereas CO emission was increased after the syngas addition at the stoichiometric condition.  相似文献   

9.
Due to the narrow flammability of gasoline, pure gasoline-fueled spark-ignited (SI) engines always encounter partial burning or even misfire at lean conditions. Gasoline engines tend to suffer poor combustion and expel large emissions at idle conditions because of the high variation in the intake charge and low combustion temperature. Comparatively, hybrid hydrogen engines (HHE) fueled with the mixtures of hydrocarbon fuels and hydrogen seem to achieve lower emissions and gain higher thermal efficiencies than the original hydrocarbon-fueled engines due to the wide flammability and high flame speed of hydrogen. Since a HHE only requires a small amount of hydrogen, it also removes concerns about the high production and storage costs of hydrogen. This paper introduced an experiment conducted on a four-cylinder SI gasoline engine equipped with a hydrogen port-injection system to explore the performance of a hybrid hydrogen–gasoline engine (HHGE) at idle and lean conditions. The injection timings and durations of hydrogen and gasoline were governed by a hybrid electronic control unit (HECU) developed by the authors, which can be adjusted freely according to the commands from a calibration computer. During the test, hydrogen flow rate was varied to ensure that hydrogen volume fraction in the intake was constantly kept at 3%. For the specified hydrogen addition level, gasoline flow rate was reduced to make the engine operate at idle and lean conditions with various excess air ratios. The test results demonstrated that cyclic variations in engine idle speed and indicated mean effective pressure were eased with hydrogen enrichment. The indicated thermal efficiency was obviously higher for the HHGE than that for the original gasoline engine at idle and lean conditions. The indicated thermal efficiency at an excess air ratio of 1.37 was increased from 13.81% for the original gasoline engine to 20.20% for the HHGE with a 3% hydrogen blending level. Flame development and propagation periods were also evidently shortened after hydrogen blending. Moreover, HC, CO and NOx emissions were all improved after hydrogen enrichment at idle and lean conditions. Therefore, the HHE methodology is an effective and promising way for improving engine idle performance at lean conditions.  相似文献   

10.
This paper investigated the effect of hydrogen addition on enhancing the performance of a methanol engine at part load and lean conditions. The experiment was conducted on a modified spark-ignited engine equipped with an adjustable dual-fuel injection system. The engine was run at an engine speed of 1400 rpm with two hydrogen volume fractions in the intake of 0% and 3%. The test results illustrated that the engine cyclic variation was eased and the brake thermal efficiency was enhanced after the hydrogen blending. Besides, the hydrogen enrichment was effective on reducing the flame development and propagation periods. HC and CO emissions were generally reduced after the hydrogen blending. NOx emissions from the hydrogen-blended methanol engine could be dropped to a low level when the engine was run under high excess air ratios.  相似文献   

11.
Hydrogen addition is an effective way for improving the performance of spark-ignited (SI) engines at stoichiometric and especially lean conditions. Spark timing also heavily influences the SI engine performance. This paper experimentally investigated the effect of spark timing on performance of a hydrogen-enriched gasoline engine at lean conditions. The experiment was carried out on a four-cylinder, port-injection gasoline engine which was modified to be an electronically controlled hybrid hydrogen–gasoline engine (HHGE) by adding a hydrogen port-injection system on the intake manifolds while keeping the original gasoline injection system unchanged. A hybrid electronic control unit (HECU) was developed to govern the injection timings and durations of hydrogen and gasoline to enforce the timely mixing of hydrogen and gasoline in the intake ports at the expected blending levels and excess air ratios. During the test, the engine speed was fixed at 1400 rpm and the manifolds absolute pressure (MAP) was kept at 61.5 kPa. The hydrogen volume fraction in the intake was increased from 0% to 3% through adjusting the hydrogen injection duration. For a specified hydrogen addition level, gasoline injection duration was reduced to ensure the engine operating at two excess air ratios of 1.2 and 1.4, respectively. The spark timing for a specified hydrogen addition level and excess air ratio was varied from 20 to 50 °CA BTDC with an interval of 2 °CA. The test results showed that the indicated mean effective pressure (Imep) first increased and then decreased with the increase of spark advance. The optimum spark timing for the max. Imep (OST) was retarded for the HHGE at a specified excess air ratio. The max. indicated thermal efficiency appeared at the OST. Flame development period was shortened whereas flame propagation period was prolonged with the decrease of spark advance. The coefficient of variation in indicated mean effective pressure generally gained its minimum value at the OST. HC and NOx emissions were continuously decreased with the retarding of spark timing. However, the effect of spark timing on CO emission was found insignificant.  相似文献   

12.
This paper experimentally investigated the effect of hydrogen addition on the cold start performance of a methanol engine. The test was conducted on a modified four-cylinder gasoline engine. An electronically controlled hydrogen injection system was applied to realize the hydrogen port injection. The engine was started at an ambient temperature of 25 °C with two hydrogen flow rates of 0 and 189 dm3/s, respectively. The results demonstrated that hydrogen addition availed elevating the peak engine speed and cylinder pressure during the cold start. Both flame development and propagation periods are shortened after the hydrogen addition. When the hydrogen volume flow rate was raised from 0 to 189 dm3/s, HC, CO and total number of particulate emissions within 19 s from the onset of cold start were reduced by 68.7%, 75.2% and 72.4%, respectively. However, because of the enhanced in-cylinder temperature, NOx emissions were increased after the addition of hydrogen.  相似文献   

13.
Ethanol, as one of the carbon-neutral fuels for spark ignition (SI) engine, has been widely used. Dehydration and purification of ethanol during production process will lead to high energy consumption. If hydrous ethanol can be directly applied to the engine, the cost of use will be greatly reduced. Due to the high latent heat of vaporization of ethanol and water, it is necessary to consider the performance of atomization, evaporation and combustion stability when hydrous ethanol is used in engine. As a zero-carbon fuel, hydrogen has excellent characteristics such as low ignition energy, fast flame propagation speed and wide combustion limit. The combination of hydrous ethanol and hydrogen can reduce the use cost and ensure better combustion performance. Therefore, this study explores the performance of hydrous ethanol/hydrogen in SI combined injection engine. The hydrous ethanol is injected into the intake port and the hydrogen is directly injected into the cylinder during the compression stroke. In this study, we firstly analyze the optimal water blending ratio (ω) of hydrous ethanol, which including 0, 3%, 6%, 9% and 12%. The experimental results show that the hydrous ethanol with 9% water ratio has the best performance without hydrogen addition. Based on the 9% water ratio, the effects of hydrogen blending ratio (0, 5%, 10%, 15% and 20%) on the combustion and emission under different excess air ratio (λ) (1, 1.1, 1.2, 1.3, 1.4). Hydrogen addition can increase the degree of constant volume combustion, so that the maximum cylinder pressure and temperature increase with the increase of the hydrogen blending ratio (HBR). When λ = 1.3 and HBR = 20%, the maximum in-cylinder pressure can be increased by 108.64% compared to pure hydrous ethanol. Hydrogen effectively increases the indicated mean effective pressure (IMEP) and reduces the coefficient of variation of IMEP (COVIMEP). Adding hydrogen can reduce CO and HC emissions, while NOx emissions will increase. When λ = 1.2 and HBR increasing from 0 to 20%, the NOx emissions increase by 106.75%, but it is still less than the NOx emissions of pure hydrous ethanol at λ = 1. On the whole, hydrogen direct injection can improve the combustion performance of hydrous ethanol and achieve stable combustion under lean-burn conditions.  相似文献   

14.
This paper proposed a feasible method for estimating the turbulent burning velocity of gasoline/hydrogen blends in a spark-ignited (SI) engine based on the cumulative heat release fraction, engine speed and engine geometry. The experiment was conducted on a naturally-aspirated port-injection gasoline engine equipped with a hydrogen injection system. The engine was run at 1400 rpm with different loads and hydrogen volume fractions in the intake gas. The test results showed that the addition of hydrogen benefited increasing the burning velocity and advancing the relevant crank angle for the peak burning velocity, due to the high burning and diffusion velocities of hydrogen. At 1400 rpm, a manifolds absolute pressure of 61.5 kPa and stoichiometric conditions, the peak burning velocity was raised from 11.6 to 12.3 and 14.6 m/s, and the relevant crank angle for the peak burning velocity was advanced from 21.0 to 14.0 and 8.6 oCA when the hydrogen volume fraction in the intake increased from 0% to 3% and 6%, respectively. Moreover, the effect of hydrogen addition on enhancing the burning velocity of a gasoline engine was more pronounced at low loads than that at high loads.  相似文献   

15.
The comparative study on performance of the hydrogen/gasoline and hydrogen/n-butanol rotary engines was conducted in the present paper. Considering the stable operation of the engine, for both hydrogen/gasoline case and hydrogen/n-butanol case, the operating conditions were set at: 4000 rpm (engine speed), 35 kPa (intake pressure) and 30 °CA BTDC (spark timing). The total excess air ratio of mixture was maintained at 1.0 through all the tests. The testing results displayed that hydrogen enrichment improved performance of both gasoline and n-butanol rotary engines. To be more specific, brake thermal efficiency was increased, flame development and propagation periods were shortened, the coefficient of variation in flame propagation period was decreased, and the emissions of HC and CO were decreased. NOx emissions were mildly increased after hydrogen addition. Besides, hydrogen/n-butanol rotary engine possessed the similar performance to hydrogen/gasoline rotary engine.  相似文献   

16.
Cooled and heavy exhaust gas recirculation (EGR) has been used to control NOx emissions from diesel engines, but its application has been limited by low thermal efficiency or high unburned hydrocarbon emissions. In this study, hydrogen was added into the intake manifold of a diesel engine to investigate its effect on NOx emissions and thermal efficiency under low-temperature and heavy-EGR conditions. The energy content of the introduced hydrogen was varied from an equivalent of 2-10% of the total fuel’s lower heating value. A test engine was operated at a constant diesel fuel injection rate and engine speed to maintain the same engine control unit (ECU) parameters, such as injection time, while observing changes in the carbon dioxide produced due to variations in the hydrogen supply. Additionally, the EGR system was modified to control the EGR ratio. The temperature of the intake gas manifold was controlled by both the EGR cooler and the inter-cooling devices to maintain a temperature of 25 °C. Exhaust NOx emissions were measured for different hydrogen flow rates at a constant EGR ratio. The test results demonstrated that the supplied hydrogen reduced the specific NOx emissions at a given EGR ratio while increasing the brake thermal efficiency. This behavior was observed over constant EGR ratios of 2, 16, and 31%. The rate of NOx reduction due to hydrogen addition increased at higher EGR ratios compared with pure diesel combustion at the same EGR ratio. At an EGR ratio of 31%, when the hydrogen equivalent to 10% of the total fuel’s lower heating value was supplied, the specific NOx was lowered by 25%, and there was a slight increase in the brake thermal efficiency. This behavior was investigated by measuring and analyzing changes in the exhaust gas composition, including oxygen, carbon dioxide, and water vapor.  相似文献   

17.
In this experimental research, the hydrogen gas at a different flow rate (4 lpm, 8 lpm, & 12 lpm) is introduced into the intake port of a diesel engine fueled with B20 (20% CNSL (Cashew nut shell liquid) + 80% diesel) biodiesel blend to find out the best H2 flow rate. Then, ethanol-blended (5%, 10%, and 15% by volume) B20 blend along with the best H2 flow rate are tested in the same engine to examine the engine performance. The experimental results showed that B20 with 8 lpm H2 flow gives the maximum brake thermal efficiency and subsequently reduces the BSFC. Furthermore, by blending ethanol with the B20 blend, the BTE of the engine is improved further. The 10% ethanol blended B20 blend with 8 lpm hydrogen flow gives the maximum BTE of 37.9% higher than diesel whose values are 33.6% at full load. Also, this fuel combination led to the maximum reduced levels of CO and HC emissions with an increase in exhaust gas temperature and NOx emissions. From the results, the 10% ethanol blended B20 blend with 8 lpm H2 flow dual-fuel configuration is recommended as an alternative to sole diesel fuel.  相似文献   

18.
Strategies were investigated for increased in-cylinder formation of hydrogen. The use of low intake oxygen with a post injection was proposed. An intake oxygen sweep was conducted on a lean-burn compression ignition engine by adjusting of the exhaust gas recirculation rate. The results revealed that the yield of hydrogen increased exponentially when the intake oxygen was reduced to achieve low temperature combustion. Further tests showed that low temperature combustion operation consistently produced more hydrogen than high temperature combustion for similar air-to-fuel ratios.To increase the hydrogen yield further, a post injection timing sweep was carried out with low temperature combustion operation. Increased yields of hydrogen were obtained, up to 0.76% by volume, when then the post injection timing was advanced from 70 to 20° crank angle after top dead centre. At the same time, the indicated NOX emissions reduced to 0.013 g/kW·hr and the smoke emissions were 0.14 FSN. Thus, the tests established that the combination of low temperature combustion, low intake oxygen, and an early post injection produced a high yield of hydrogen with simultaneously ultra-low NOX and smoke emissions. The main drawback of this strategy was the increased formation of methane, up to 3015 ppm by volume. However, further analysis showed that the hydrogen to methane ratio actually increased under low temperature combustion operation.  相似文献   

19.
The effects of hydrogen ratios on combustion and emission characteristics of gasoline engine were studied under different exhaust gas recirculation (EGR), ignition timing and ignition pressure. The test performed in a modified gasoline direct ignition engine at different hydrogen ratios of 0%, 5%, 10% and 25%. In addition, the EGR rate set to 0%, 5%, 10% and 20% to study the combustion and emission characteristics. Addition to the different hydrogen fractions, 5% of TiO2 is added to increase the combustion characteristics with reduced emission. Regarding the results of the current study, the engine torque increases by 15% due to the addition of hydrogen in gasoline, while mechanical efficiency is improved by achieving a large throttle opening. At the same time, NOx emission decreased by 62% compared to the unmodified engine due to the influence of EGR, hydrogen ratio and high oxygen concentration TiO2. Moreover, the emission of CO and HC also reduced due to the influence of hydrogen fuel. Additionally, few more tests are taken to monitor the effect of the injection pressure for the hydrogen fuel. Higher injection reports higher effective thermal efficiency at 4 MPa and lower NOx. Reasonable injection pressure results in shorten flame development period.  相似文献   

20.
The Wankel rotary engine is a potential alternative to the reciprocating engine in hybrid applications because of its favorable energy to weight ratio. In this study, a Wankel rotary engine was modified to run on a hydrogen–gasoline blend. Hydrogen enrichment improved the performance of a lean-burn spark-ignition rotary engine operating at high speed and wide open throttle conditions with the original ignition timing, using 0%, %2, 4%, 5%, 7%, and 10% hydrogen energy fractions at the intake. The experimental results showed that adding hydrogen to gasoline in the engine improved the thermal efficiency and the power output. Hydrocarbon and carbon monoxide emissions were reduced while nitrogen oxide emissions increased with the increase of hydrogen fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号