共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel mixed metal oxide catalyst Ca3.5xZr0.5yAlxO3 was synthesized through the coprecipitation of metal hydroxides. The textural, morphological, and surface properties of the synthesized catalysts were characterized via Brunauer–Emmett–Teller method, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The catalytic performance of the as-synthesized catalyst series was evaluated during the transesterification of cooking palm oil with methanol to produce fatty acid methyl esters (FAME). The influence of different parameters, including the calcination temperature (300–700 °C), methanol to oil molar ratio (6:1–25:1), catalyst amount (0.5–6.5 wt%), reaction time (0.5–12 h) and temperature (70–180 °C), on the process was thoroughly investigated. The metal oxide composite catalyst with a Ca:Zr ratio of 7:1 showed good catalytic activity toward methyl esters. Over 87% of FAME content was obtained when the methanol to oil molar ratio was 12:1, reaction temperature 150 °C, reaction time 5 h and 2.5 wt% of catalyst loading. The catalyst could also be reused for over four cycles. 相似文献
2.
New catalysts and environmentally benign processes may lead to methyl ester production with improved properties at competitive costs. In this study, transesterification of waste frying oil to biodiesel using tetramethylguanidine as a strong base catalyst was conducted. The influence of catalyst concentration and of certain physicochemical properties of waste frying oil was investigated. Experiments were also performed on a semi-refined cottonseed oil for comparison purposes. Experimental results showed that methyl ester conversion was dependent on the type of oil, catalyst concentration and reaction time. 相似文献
3.
Fermentative hydrogen generation was studied using palm kernel cake (PKC) as sustainable cellulosic biomass. PKC was subjected to an acid hydrolysis approach using dilute H2SO4 (7% v/v). PKC hydrolysate obtained was then diluted (70%) and used as a substrate for hydrogen generation. Chemical analysis showed that the main fermentable sugars in diluted PKC hydrolysate were glucose, xylose and mannose with the concentrations of 2.75 g/L, 2.60 g/L and 27.75 g/L, respectively. Hydrogen production was carried out by the cultivation of Clostridium acetobutylicum YM1 on PKC hydrolysate. The effect of incubation temperature, the initial pH of culture medium and microbial inoculum size on hydrogen production was studied using a statistical model. The analysis of the model generated showed that the initial pH value of the culture medium and inoculum size had significant effects on the hydrogen production. The study showed that the optimum conditions for the biohydrogen production were 30.57 °C temperature, pH 5.5 and 20% inoculum size. A verification experiment was performed in the optimum conditions determined. Experimental results of the verification test showed that a cumulative hydrogen volume of 1575 ml/L was generated with consuming 2.75 g/L glucose, 2.20 g/L xylose and 16.31 g/L mannose. 相似文献
4.
Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production 总被引:1,自引:0,他引:1
An economic and environmentally friendly catalyst derived from waste freshwater mussel shell (FMS) was prepared by a calcination-impregnation-activation method, and it was applied in transesterification of Chinese tallow oil. The as-prepared catalyst exhibits a “honeycomb” -like structure with a specific surface area of 23.2 m2 g−1. The newly formed CaO crystals are major active phase of the catalyst. The optimal calcination and activity temperature are 900 °C and 600 °C, respectively. When the reaction is carried out at 70 °C with a methanol/oil molar ratio of 12:1, a catalyst concentration of 5% and a reaction time of 1.5 h, the FMS-catalyst is active for 7 reaction cycles, with the biodiesel yield above 90%. The experimental results indicate that the FMS can be used as an economic catalyst for the biodiesel production. 相似文献
5.
Palm empty fruit bunch (EFB), a by-product of the palm oil industry, is being recognized as one of the most potential kinds of biomass for energy production in Thailand. However, it has been reported that, in combusting EFB in boilers, some compounds evolving from abundant alkali metals in EFB into gas-phase condense and deposit on low-temperature surfaces of heat exchange equipment, causing fouling and corrosion problems. To come up with a solution to impede the deposition, kaolin, which is abundant in kaolinite (Al2Si2O5(OH)4), is employed to capture the alkali metal vapours eluding from the combustion region. The experiments were designed to simulate the combustion situations that may take place when kaolin is utilized in two different approaches: premixing of kaolin with EFB prior to combustion and gas-phase reaction of volatiles from EFB with kaolin. The amounts of kaolin used were 8% and 16% by weight based on dry weight of EFB, which were equivalent to one and two times of the theoretical kaolin requirement to capture all potassium originally present in the EFB. The furnace temperatures used for EFB combustion were 700–900 °C and ashes were analyzed by XRF and XRD. The results revealed that, under the kaolin premixing condition, 8% kaolin addition was sufficient to capture the potassium compounds at low temperature, i.e. 700 and 800 °C. However, when the temperature was increased to 900 °C, 16% kaolin addition was needed to completely capture the potassium compounds. The results from gas-phase experiments showed that kaolin can capture volatile potassium at maximum 25% at 900 °C. The XRD results showed, for both experimental cases, the evidence of formation of the high melting temperature potassium-alumino-silicates, which confirmed the reaction of potassium compounds with kaolin. The study also suggests that the premixing method is better than the other because of its higher overall capture efficiency. 相似文献
6.
《International Journal of Hydrogen Energy》2019,44(28):14406-14415
Development of cost-effective catalyst material with enhanced activity for hydrogen generation is highly desirable for hydrogen powered portable applications. In this work, molybdenum disulfide (MoS2) incorporated on palm oil waste activated carbon (POAC) was used as a novel catalyst for enhanced hydrogen production by sodium borohydride (NaBH4) hydrolysis. Hydrothermally synthesized MoS2/POAC catalyst composite was characterized by SEM, EDX, XRD, FTIR, Raman, TGA and Surface area analysis. Characterization studies revealed the uniform and complete synthesis of MoS2 nanoparticles on the POAC surface with crystallite size of 18.2 nm. The catalyst composite showed enhancement in thermal stability and reduction in specific surface area as compared with POAC. Hydrogen generation investigations showed ideal weight ratio of composite catalyst as 10:1 (w/w of POAC: MoS2) and optimal catalyst to feed weight ratio as 0.07. MoS2/POAC catalyst with 10 wt% of POAC loading recorded the maximum catalytic activity of 1170.66 mL/g min with lower activation energy of 39.1 kJ/mol. The catalyst composite exhibited virtuous reusability with a 28% loss in activity for nine cycle regeneration run. Thus, MoS2/POAC catalyst system is highly attractive for commercial applicability and is a potential candidate for enhanced hydrogen production through NaBH4 hydrolysis. 相似文献
7.
The use of palm oil as a base stock for an environmentally friendly lubricant for small four-stroke motorcycle engines is investigated. Palm oil was blended with mineral oil at different compositions to the viscosity requirement of commercial lubricant. A liquid additive package was added to improve the viscosity of the lubricant. A blend that meets the viscosity requirement was then chosen for physical and chemical property characterization and subjected to an engine test. The blend consists of 50.6% (wt.) palm oil, 41.6% mineral oil, and 7.8% additive package. The properties evaluated include viscosity, viscosity index, flash point, foaming characteristics, and wear scar. The engine performance and emission tests were carried out with a 125-cc motorcycle on a chassis dynamometer using a Bangkok Driving Cycle. Compared to a mineral-based commercial oil, the palm oil-based lubricant exhibits superior tribological properties, but offers no clear advantage on engine and emission performance. 相似文献
8.
Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 °C with N2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N2, particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 °C) and 2 L/min of N2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques. 相似文献
9.
A sulfated zirconia catalyst has been prepared by a novel one-pot vapor-controlled synthesis route using ammonium persulphate as sulfate agent. A possible formation mechanism of the catalyst is proposed. The effect of calcination temperature and S/Zr molar ratio on the structural, textural and catalytic properties of the prepared catalyst were investigated in detail using X-ray diffraction (XRD), N2 adsorption–desorption, ammonia temperature programmed desorption (NH3-TPD), Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope (SEM) which was equipped with an energy dispersive spectroscope (EDS). The results indicated that the samples calcined at 500 °C possessed zirconia of pure tetragonal structure, more content of sulfur and better distribution of acid sites on the surface of zirconia compared with the samples calcined at 600 °C at fixed S/Zr molar ratio. Moreover, they showed excellent catalytic activity with 100% yields of biodiesel for the transesterification of soybean oil with methanol. 相似文献
10.
循环流化床锅炉中灰循环倍率与燃烧产物热平衡方程式 总被引:1,自引:1,他引:1
循环流化床锅炉在炉膛、分离器和回料器组成的灰循环系统中 ,存在大量的循环灰量。它是载热体 ,从炉膛吸入或放出热量。虽然循环灰温降不大 ,然而循环灰量却极大 ,严重影响燃烧产物的热平衡。在循环流化床锅炉热力计算时 ,必须加以考虑 相似文献
11.
CFB (circulating fluidized bed) boiler bottom ash contains large amounts of physical heat. A BAC (bottom ash cooler) is often used to treat high temperature bottom ash to reclaim heat, and to have the ash easily transported. The unit thermal economic indicators of three CFB power plants in China were derived based on heat balance calculation and analysis on the principled thermal system in turbine heat acceptance condition, taking the influence of two different bottom ash heat recovery modes into account. One of the two bottom ash heat recovery modes was the FBAC (fluidized bed ash cooler) mode, and the other was the RAC (rolling-cylinder ash cooler) mode. The results indicated that two modes both improved the thermal economy of units. Compared with the RAC mode, the FBAC mode obtained higher plant thermal efficiency, lower plant heat rate and less standard coal consumption. The standard coal consumption rate of the FBAC mode was less nearly 2 g/(kW h) than the RAC mode in the three CFB power plants, when the net calorific power of standard coal was 29.27 MJ/kg. 相似文献
12.
A comparative study of vegetable oil methyl esters (biodiesels) 总被引:1,自引:0,他引:1
In the present study, rubber seed oil, coconut oil and palm kernel oil, which are locally available especially in Kerala (India), are chosen and their transesterification processes have been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized. Biodiesel from rubber seed oil (with high free fatty acid) was produced by employing two-step pretreatment process (acid esterification) to reduce acid value from 48 to 1.72 mg KOH/g with 0.40 and 0.35 v/v methanol-oil ratio and 1.0% v/v H2SO4 as catalyst at a temperature of 63(±2) °C with 1 h reaction time followed by transesterification using methanol-oil ratio of 0.30 v/v, 0.5 w/v KOH as alkaline catalyst at 55(±2) °C with 40 min reaction time to yield 98-99% biodiesel. Coconut oil and palm oil, being edible oils, transesterification with 0.25 v/v methanol-oil ratio, 0.50% w/v KOH as at 58(±2) °C, 20 min reaction time for coconut oil and 0.25% v/v methanol-oil ratio, 0.50% w/v KOH as alkaline catalyst at 60(±2) °C for palm kernel oil will convert them to 98-99% biodiesel. The brake thermal efficiency of palm oil biodiesel was higher with lower brake specific fuel consumption, but rubber seed oil biodiesel(ROB) showed less emission (CO and NOx) compared to other biodiesels. 相似文献
13.
解决锅炉折焰角积灰问题的探讨 总被引:1,自引:0,他引:1
针对普遍存在的锅炉折焰角积发难题,计算了堆理受热面的面积和对效率的影响,分析了造成积灰的原因,提出了综合解决这一问题的方法和途径. 相似文献
14.
Biomass refers to renewable energy sources and comes from biological materials such as trees, plants, manure as well as municipal solid wastes. Effective utilization of biomass as an energy resource requires the use of an optimization model to take into account biomass availability, transportation distances, and the scales and locations of power facilities within a region. In this study, we develop a new analytical tool that integrates cost, energy savings, greenhouse gas considerations, scenario analysis, and a Geographic Information System (GIS) to provide a comprehensive analysis of alternative systems for optimizing biomass energy production. The goal is to find a system that optimizes the use of biomass waste by analyzing the cost, net avoided CO2 emission, and net energy savings with the objective of profit maximization. In this paper, we describe an application of the modeling tool described above to one of the fastest growing agriculture industries in Asia, the palm oil industry, for the case of Malaysia. Five scenarios utilizing palm oil waste as energy resources are discussed. The scenario of installing of new Combined Heat and Power (CHP) plants in the region yielded a number of benefits in terms of net energy savings, net avoided CO2 emission, and profits. The results also demonstrate the benefits of utilizing excess heat for biomass pre-treatment. The choice of a suitable CHP plant scale, management strategies for biomass seasonal availability, and market price of biomass are also important factors for effective use of the biomass in a region. 相似文献
15.
《International Journal of Hydrogen Energy》2020,45(20):11651-11661
Efficient, low-cost and safe new systems are still needed for the storage and usage of hydrogen energy, which is considered the most important energy source of the future. For this reason, the aim of this study was to prepare Co0, Ni0, and Cu0 composite catalysts with fly ash (FA) formed by combustion of coal in thermal power plants to be used for the dehydrogenation of ethylenediamine bisborane (EDAB) as a hydrogen source. In the hydrolysis reactions of EDAB, parameters such as metal type, catalyst concentration, temperature, and EDAB concentration were investigated. The FA-Cu0 composite catalyst was determined to be an effective catalyst system for hydrogen production by hydrolysis of EDAB from among the FA-M0 composite catalysts. Besides, FA can be used as an effective support material in order to prevent agglomeration of metal particles. 相似文献
16.
17.
Shurong Wang Fan Zhang Qinjie Cai Xinbao Li Lingjun Zhu Qi Wang Zhongyang Luo 《International Journal of Hydrogen Energy》2014
The development of a high performance and low cost catalyst is an important contribution to clean hydrogen production via the catalytic steam reforming of renewable bio-oil. Solid waste coal ash, which contains SiO2, Al2O3, Fe2O3 and many alkali and alkaline earth metal oxides, was selected as a superior support for a Ni-based catalyst. The chemical composition and textural structures of the ash and the Ni/Ash catalysts were systematically characterized. Acetic acid and phenol were selected as two typical bio-oil model compounds to test the catalyst activity and stability. The conversion of acetic acid and phenol reached as much as 98.4% and 83.5%, respectively, at 700 °C. It is shown that the performance of the Ni/Ash catalyst was comparable with other commercial Ni-based steam reforming catalysts. 相似文献
18.
Technical and ecological aspects of implementation of High Temperature Air Combustion to power station boilers fired with pulverized coal have been considered. Several boiler concepts have been examined in the context of the following three key points: existence of an intensive in-furnace recirculation, homogeneity of both the temperature and the chemical species fields, and uniformity of heat fluxes. CFD-based numerical simulations have been performed in order to determine the shape of the boiler and its dimensions, to optimize both the distance between burners and location of the burner block. It was concluded that HTAC technology could be a realizable, efficient and clean technology for pulverized coal fired boilers. 相似文献
19.
Prawit Kongjan Kullachat Sama Khaleeyah Sani Rattana Jariyaboon Alissara Reungsang 《International Journal of Hydrogen Energy》2018,43(20):9577-9590
Hydrogenogenic batch fermentation without nutrients addition was investigated at different SLS: POME mixing ratios of 100:0, 95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45,50:50, and 0:100 (Volatile Solid, VS basis) at initial organic concentrations of 21 and 7 g-VS/L. Satisfactory hydrogen yield of 84.5 ± 0.7 mL H2/g-VSadded was achieved from 7 g-VS/L batch having SLS: POME-VS mixing ratio of 55:45. Adding NaHCO3 3 g/L or 0.43 g-NaHCO3/g-VS) in the two-stage anaerobic system at 7 g-VS/L could provide sufficient buffering capacity. Hydrogenogenic effluent from 7 g-VS/L batch at SLS: POME mixing ratio of 55:45 (VS basis) could further generate rather high methane yield of 311.2 ± 8.0 mL- CH4/g-VSadded in themethanogenic stage.According to the experimental results, bio-hythane approximately 55.5 × 106 m3/year with 21% (V/V) of hydrogen, equivalent to51.0 × 106 l-gasoline could be produced potentially from 3.88 × 106 m3 of mixed SLS and POME through the two-stage anaerobic co-digestion. 相似文献
20.
Zakir Khan Suzana Yusup Murni Melati Ahmad Nor Adilla Rashidi 《International Journal of Hydrogen Energy》2014
This paper investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen rich gas production using pilot scale fluidized bed gasifier under atmospheric condition. The effect of temperature (600–750 °C) and steam to biomass ratio (1.5–2.5 wt/wt) on hydrogen (H2) yield, product gas composition, gas yield, char yield, gasification and carbon conversion efficiency, and lower heating values are studied. The results show that H2 hydrogen composition of 82.11 vol% is achieved at temperature of 675 °C, and negligible carbon dioxide (CO2) composition is observed at 600 °C and 675 °C at a constant steam to biomass ratio of 2.0 wt/wt. In addition, maximum H2 yield of 150 g/kg biomass is observed at 750 °C and at steam to biomass ratio of 2.0 wt/wt. A good heating value of product gas which is 14.37 MJ/Nm3 is obtained at 600 °C and steam to biomass ratio of 2.0 wt/wt. Temperature and steam to biomass ratio both enhanced H2 yield but temperature is the most influential factor. Utilization of adsorbent and catalyst produced higher H2 composition, yield and gas heating values as demonstrated by biomass catalytic steam gasification and steam gasification with in situ CO2 adsorbent. 相似文献