首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Analytical and experimental studies were performed on a direct‐expansion solar‐assisted heat pump (DX‐SAHP) water heating system, in which a 2 m2 bare flat collector acts as a source as well as an evaporator for the refrigerant. A simulation model was developed to predict the long‐term thermal performance of the system approximately. The monthly averaged COP was found to vary between 4 and 6, while the collector efficiency ranged from 40 to 60%. The simulated results were used to obtain an optimum design of the system and to determinate a proper strategy for system operating control. The effect of various parameters, including solar insolation, ambient temperature, collector area, storage volume and speed of compressor, had been investigated on the thermal performance of the DX‐SAHP system, and the results had indicated that the system performance is governed strongly by the change of solar insolation, collector area and speed of compressor. The experimental results obtained under winter climate conditions were shown to agree reasonably with the computer simulation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Y.H. Kuang  R.Z. Wang   《Solar Energy》2006,80(7):795-803
This paper reports on the long-term performance of a direct-expansion solar assisted heat pump (DX-SAHP) system for domestic use, which can offer space heating in winter, air conditioning in summer and hot water during the whole year. The system employs a bare flat-plate collector array with a surface area of 10.5 m2, a variable speed compressor, a storage tank with a total volume of 1 m3 and radiant floor heating unit. The performance under different operation modes is presented and analyzed in detail. For space-heating-only mode, the daily-averaged heat pump COP varied from 2.6 to 3.3, while the system COP ranged from 2.1 to 2.7. For water-heating-only mode, the DX-SAHP system could supply 200 l or 1000 l hot water daily, with the final temperature of about 50 °C, under various weather conditions in Shanghai, China. For space-cooling-only mode, the compressor operates only at night to take advantage of a utility’s off-peak electrical rates by chilling water in the thermal storage tank for the daytime air-conditioning. It shows that, the multi-functional DX-SAHP system could guarantee a long-term operation under very different weather conditions and relatively low running cost for a whole year.  相似文献   

3.
Solar heat pump drying and water heating in the tropics   总被引:1,自引:0,他引:1  
In this study, the performance of a solar assisted heat pump dryer and water heater has been investigated. A simulation program has been developed. The predicted results are compared with those obtained from experiments under the meteorological conditions of Singapore. A coefficient of performance (COP) value of 7.0 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.7 have been found for evaporator–collector and air collector, respectively. A value of the specific moisture extraction rate (SMER) of 0.65 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm. Results suggest that the total drying time of the product decreases with the increase in drying potential. Drying potential is directly proportional to the air flow rate, drying air temperature and inversely proportional to the air relative humidity. Three important parameters that affect the system performance are solar radiation, compressor speed and the total load placed in the drying chamber. Both SMER and COP decrease with increase in compressor speed.  相似文献   

4.
The long-term thermal performance of a direct-expansion, solar-assisted heat pump is determined from the transient simulation of the system. The system employs a bare collector that also acts as the heat pump evaporator. Of particular interest in this study is the configuration in which the compressor and the collector area are properly matched from the long-term thermal performance point of view. This matching is achieved through multistep as well as two-step compressor capacity modulation. In addition to examining the effects of compressor capacity modulation, the effects of various system parameters such as collector area, storage volume, load temperature, wind speed, collector slope, and refrigerant properties are also studied in detail.Monthly averaged thermal performance parameters such as the heat pump system coefficient of performance are determined by executing a computer simulation program that uses the typical meterological year (TMY) solar data for Norfolk, Virginia. Results indicate that the system performance is governed strongly by collector area, compressor RPM, load temperature, and refrigerant properties. The remaining parameters have only weak influence on the long-term system performance of direct expansion solar-assisted heat pump (SAHP) system considered in this study.  相似文献   

5.
《Applied Thermal Engineering》2001,21(10):1049-1065
Analytical and experimental studies were performed on a solar assisted heat pump water heating system, where unglazed, flat plate solar collectors acted as an evaporator for the refrigerant R-134a. The system was designed and fabricated locally, and operated under meteorological conditions of Singapore. The results obtained from simulation are used for the optimum design of the system and enable determination of compressor work, solar fraction and auxiliary energy required for a particular application. To ensure proper matching between the collector/evaporator load and compressor capacity, a variable speed compressor was used. Due to high ambient temperature in Singapore, evaporator can be operated at a higher temperature, without exceeding the desired design pressure limit of the compressor, resulting in an improved thermal performance of the system. Results show that, when water temperature in the condenser tank increases with time, the condensing temperature, also, increases, and the corresponding COP and collector efficiency values decline. Average values of COP ranged from about 4 to 9 and solar collector efficiency was found to vary between 40% and 75% for water temperatures in the condenser tank varying between 30°C and 50°C. A simulation model has been developed to analyse the thermal performance of the system. A series of numerical experiments have been performed to identify important variables. These results are compared with experimental values and a good agreement between predicted and experimental results has been found. Results indicate that the performance of the system is influenced significantly by collector area, speed of the compressor, and solar irradiation. An economic analysis indicates a minimum payback period of about two years for the system.  相似文献   

6.
Y.W. Li  R.Z. Wang  J.Y. Wu  Y.X. Xu   《Applied Thermal Engineering》2007,27(17-18):2858-2868
A direct expansion solar assisted heat pump water heater (DX-SAHPWH) experimental set-up is introduced and analyzed. This DX-SAHPWH system mainly consists of 4.20 m2 direct expansion type collector/evaporator, R-22 rotary-type hermetic compressor with rated input power 0.75 kW, 150 L water tank with immersed 60 m serpentine copper coil and external balance type thermostatic expansion valve. The experimental research under typical spring climate in Shanghai showed that the COP of the DX-SAHPWH system can reach 6.61 when the average temperature of 150 L water is heated from 13.4 °C to 50.5 °C in 94 min with average ambient temperature 20.6 °C and average solar radiation intensity 955 W/m2. And the COP of the DX-SAHPWH system is 3.11 even if at a rainy night with average ambient temperature 17.1 °C. The seasonal average value of the COP and the collector efficiency was measured as 5.25 and 1.08, respectively. Through exergy analysis for each component of the DX-SAHPWH system, it can be calculated that the highest exergy loss occurs in the compressor, followed by collector/evaporator, condenser and expansion valve, respectively. Further more, some methods are suggested to improve the thermal performance of each component and the whole DX-SAHPWH system.  相似文献   

7.
In this study, zero energy building (ZEB) with four occupants in the capital and most populated city of Iran as one of the biggest greenhouse gas producers is simulated and designed to reduce Iran's greenhouse emissions. Due to the benefits of hydrogen energy and its usages, it is used as the primary energy storage of this building. Also, the thermal comfort of occupants is evaluated using the Fanger model, and domestic hot water consumption is supplied. Using hydrogen energy as energy storage of an off-grid zero energy building in Iran by considering occupant thermal comfort using the fanger model has been presented for the first time in this study. The contribution of electrolyzer and fuel cell in supplying domestic hot water is shown. For this simulation, Trnsys software is used. Using Trnsys software, the transient performance of mentioned ZEB is evaluated in a year. PV panels are used for supplying electricity consumption of the building. Excess produced electricity is converted to hydrogen and stored in the hydrogen tank when a lack of sunrays exists and electricity is required. An evacuated tube solar collector is used to produce hot water. The produced hot water will be stored in the hot water tank. For supplying the cooling load, hot water fired water-cooled absorption chiller is used. Also, a fan coil with hot water circulation and humidifier are used for heating and humidifying the building. Domestic hot water consumption of the occupants is supplied using stored hot water and rejected heat of fuel cell and the electrolyzer. The thermal comfort of occupants is evaluated using the Fanger model with MATLAB software. Results show that using 64 m2 PV panel power consumption of the building is supplied without a power outage, and final hydrogen pressure tank will be higher than its initial and building will be zero energy. Required hot water of the building is provided with 75 m2 evacuated tube solar collector. The HVAC system of the building provided thermal comfort during a year. The monthly average of occupant predicted mean vote (PMV) is between ?0.4 and 0.4. Their predicted percentage of dissatisfaction (PPD) is lower than 13%. Also, supplied domestic hot water (DHW) always has a temperature of 50 °C, which is a setpoint temperature of DHW. Finally, it can be concluded that using the building's rooftop area can be transformed to ZEB and reduce a significant amount of greenhouse emissions of Iran. Also, it can be concluded that fuel cell rejected heat, unlike electrolyzer, can significantly contribute to supplying domestic hot water requirements. Rejected heat of electrolyzer for heating domestic water can be ignored.  相似文献   

8.
A hybrid solar hot water and Bi2Te3-based thermoelectric generator (TEG) unit using a heat pipe evacuated tube collector with mini-compound parabolic concentrator (mini-CPC) is proposed. In this unit, the heat from the heat pipe evacuated tube solar collector is transferred to the hot side of TEG. Simultaneously, water cooling is used at the cold side to maintain the temperature difference. Electricity is generated by TEG and the remaining heat is transferred to water at the same time. This paper investigates how to convert excess solar heat into electricity more effectively. A mathematical model regarding this unit is developed and validated. It is found that the mini-CPC can significantly improve the electrical efficiency. The optimal thermal conductance of TEG is determined, which could make the best use of excess solar heat. The excess solar heat can be effectively converted into electricity when ZT of Bi2Te3 can be improved from 100 °C to 200 °C. Using TEG with ZT = 1.0 and a geometrical concentrating ratio at 0.92, electrical and thermal efficiencies of this system are predicted to be 3.3% and 48.6% when solar radiation and water temperature are 800 Wm−2 and 20 °C, respectively.  相似文献   

9.
通过分析制冷系统和太阳能烟囱热气流发电系统的技术和特点,提出了太阳能烟囱制冷系统.将太阳能烟囱系统与制冷系统相结合进行制冷,可实现制冷不用电.该系统由烟囱、集热棚、蓄热层、涡轮机、开启式制冷压缩机、冷凝器和变速器等组成.介绍了太阳能烟囱制冷系统的结构特点、工作原理以及系统相关参数的计算方法.分析结果表明,太阳能烟囱制冷系统结构简单,运行维护方便,制冷不用电,无污染,具有良好的环境效应,可根据环境温度改变压缩机运行转速调节供冷负荷,能有效解决热带及沙漠地区的供冷及供电问题.  相似文献   

10.
The aim of this paper is to simulate the performance of an air source heat pump water heater using carbon dioxide (CO2) as a working fluid. The heat pump water heating system consists of a compressor, a gas cooler, an expansion device and an evaporator. The computer simulation model has been developed by using the heat transfer data and the thermodynamic properties of CO2. The effects on the heat pump performance by the operating parameters such as the compressor rotational speed, the inlet water temperature at the gas cooler, the inlet air temperature at the evaporator and the mass flow rate ratio of water to refrigerant were presented. For rated capacities of a 4 kW compressor with a 10 kW gas cooler and a 6 kW evaporator, the coefficient of performance is found to be between 2.0 and 3.0. The mass flow rate ratio of water and CO2 between 1.2 and 2.2 is the most suitable value for generating hot water temperature above 60°C at 15–25°C ambient air temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A simulation study of hybrid solar-geothermal heat pump system for residential applications using carbon dioxide was carried out under different operating conditions. The system consists of a solar unit (concentric evacuated tube solar collector and heat storage tank) and a CO2 heat pump unit (three double-pipe heat exchangers, electric expansion valve, and compressor). As a result, the differential of pressure ratio between the inlet and the outlet of the compressor increases by 19.9%, and the compressor work increases from 4.5 to 5.3 kW when the operating temperature of the heat pump rises from 40 °C to 48 °C. Besides, the pressure ratio of the compressor decreases from 3 to 2.5 when the ground temperature increases from 11 °C to 19 °C. The operating time of the heat pump is reduced by 5 h as the daily solar radiation increases. As the solar radiation increases from 1 to 20 MJ/m2, the collector heat rises by 48% and the maximum collector heat becomes 47.8 kWh. The heating load increases by 70% as the indoor design temperature increases from 18 °C to 26 °C. However, the solar fraction is reduced from 11.4% to 5.8% because of the increases of the heating load.  相似文献   

12.
A simulation model is utilized to predict the performance of a high temperature water-to-water heat pump, running on Refrigerant 11, over a range of evaporator and condenser water temperature (10 to 40°C and 40 to 70°C) and compressor speeds (500 to 3000 r.p.m.). It is shown that heat pump power output can be effectively controlled by varying compressor speed. Effects of compressor speed, heat source and heat sink (end-use) temperature on the heat pump efficiency are presented. Special attention is devoted to the values of predicted refrigerant temperature at the compressor discharge. These are compared with the thermal limit of the refrigerant. Modifications to the system, to reduce refrigerant maximum temperature, are also discussed.  相似文献   

13.
In this paper, the optimization of a solar photovoltaic thermal (PV/T) water collector which is based on exergy concept is carried out. Considering energy balance for different components of PV/T collector, we can obtain analytical expressions for thermal parameters (i.e. solar cells temperature, outlet water temperature, useful absorbed heat rate, average water temperature, thermal efficiency, etc.). Thermal analysis of PV/T collector depends on electrical analysis of it; therefore, five-parameter current–voltage (IV) model is used to obtain electrical parameters (i.e. open-circuit voltage, short-circuit current, voltage and current at the point which has maximum electrical power, electrical efficiency, etc.). In order to obtain exergy efficiency of PV/T collector we need exergy analysis as well as energy analysis. Considering exergy balance for different components of PV/T collector, we obtain the expressions which show the exergy of the different parts of PV/T collector. Some corrections have been done on the above expressions in order to obtain a modified equation for the exergy efficiency of PV/T water collector. A computer simulation program has been developed in order to obtain the amount of thermal and electrical parameters. The simulation results are in good agreement with the experimental data of previous literature. Genetic algorithm (GA) has been used to optimize the exergy efficiency of PV/T water collector. Optimum inlet water velocity and pipe diameter are 0.09 m s−1, 4.8 mm, respectively. Maximum exergy efficiency is 11.36%. Finally, some parametric studies have been done in order to find the effect of climatic parameters on exergy efficiency.  相似文献   

14.
Ocean thermal energy conversion (OTEC) is a power generation method that utilizes small temperature difference between the warm surface water and cold deep water of the ocean. This paper describes the performance simulation results of an OTEC plant that utilizes not only ocean thermal energy but also solar thermal energy as a heat source. This power generation system was termed SOTEC (solar-boosted ocean thermal energy conversion). In SOTEC, the temperature of warm sea water was boosted by using a typical low-cost solar thermal collector. In order to estimate the potential thermal efficiency and required effective area of a solar collector for a 100-kWe SOTEC plant, first-order modeling and simulation were carried out under the ambient conditions at Kumejima Island in southern part of Japan. The results show that the proposed SOTEC plant can potentially enhance the annual mean net thermal efficiency up to a value that is approximately 1.5 times higher than that of the conventional OTEC plant if a single-glazed flat-plate solar collector of 5000-m2 effective area is installed to boost the temperature of warm sea water by 20 K.  相似文献   

15.
This paper presents the performance results for a sensible heat storage system. The system under study operates as an air source heat pump which stores the compressor heat of rejection as domestic hot water or hot water in a storage tank that can be used as a heat source for providing building heating. Although measurements were made to quantify space cooling, space heating, and domestic water heating, this paper emphasizes the space heating performance of the unit. The heat storage system was tested for different indoor and outdoor conditions to determine parameters such as heating charge rate, compressor power, and coefficient of performance (COP). The thermal storage tank was able to store a full charge of heat. The rate of increase of storage tank temperature increased with outdoor temperature. The heating rate during a charge test, best shown by the normalized rate plots, increased with evaporating temperature due to the increasing mass flow rate and refrigerant density. At higher indoor temperature during the discharge tests, the rate of decrease of storage tank temperature was slower. Also, the discharge heating rate decreased with time since the thermal storage tank temperature decreased as less thermal energy became available for use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation.The SHWP at CIAS, which comprises 1200 m2 of evacuated-tube collectors, 50 m3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100 m3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter configuration has better thermal and economic performances over the conventional design.  相似文献   

17.
This research work studies an ice thermal energy storage having an injection of R12 refrigerant into the water to exchange heat directly. The water temperature decreases to the freezing point and ice is formed. The ice is used for creating chilled water for an air-conditioning purpose. The system consists of a compressor, a condenser, an expansion valve and a direct contact evaporator. This system has a capacity of approximately 2 tons of refrigeration. The system simulation created from the mathematical model of each component has been carried out. It was found that the performance of the system depends on two factors, the compressor speed and the mass flow rate of the refrigerant. The suitable conditions are 8–10 rps for the compressor speed and 0.04–0.06 kgs−1 for the mass flow rate. The coefficient of performance is about 3·4–3·6 which is higher than that of the conventional system. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
袁航  张红  许辉  纪腾飞 《水电能源科学》2013,31(10):253-256
为提高太阳能热水系统的输出温度,将CPC聚光技术应用于热管式真空集热管中,开发了一种新型的CPC内聚光式热管集热管。对该集热管建立数学模型,模拟计算其传热过程,获得了导热肋片温度、热管冷凝段温度等参数随太阳辐射强度的变化规律,并通过试验验证了数学模型的可靠性;与常规热管式真空管集热管传热特性相对比,证实了该集热管可大幅提高太阳能热水器输出温度。  相似文献   

19.
Process heat produced by solar collectors can contribute significantly in the conservation of conventional energy resources, reducing CO2 emission, and delaying global warming. One of the major problems associated with solar process heat application is fluctuation in system temperature during unsteady state radiation conditions which may cause significant thermal and operation problems. In this paper a transient simulation model is developed for analysing the performance of industrial water heating systems using parabolic trough solar collectors. The results showed that to prevent dramatic change and instability in process heat during transient radiation periods thermal storage tank size should not be lower than 14.5 l m?2 of collector area. Small periods of radiation instability lower than 30 min do not have significant effect on system operation. During these periods when water flow rate of collector loop is doubled the time required to restore system normal operating condition increased by a ratio of 1.5. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
《Applied Energy》2007,84(2):222-237
A flat-box aluminum-alloy photovoltaic and water-heating system designed for natural circulation was constructed. The hybrid photovoltaic/thermal (PV/T) collector was an integration of single-crystalline silicon cells into a solar thermal collector. The product was able to generate electricity and hot water simultaneously. Outdoor tests on an improved prototype were conducted in a moderate climate zone. Then dynamic simulation runs, using a validated numerical model, were performed. These included sensitivity tests with variations of the system water mass, PV cell covering factor, and front glazing transmissivity. The test results showed that the characteristic daily primary-energy saving could reach up to 65% for this system with a PV cell covering factor 0.63 and front glazing transmissivity of 0.83, when the hot water load per unit heat-collecting area exceeded 80 kg/m2. The simulated results indicated that the higher the PV cell covering factor and the glazing transmissivity, the better the overall system performance. The effects were quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号