首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Clofazimine (CLF) was formulated with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) as a solid solid dispersion (SSD) to increase the aqueous solubility and dissolution rate of the drug. Different molecular weights of PEG (1500, 4000, 6000, and 9000 Da) and PVP (14,000 and 44,000 Da) were used in different drug:carrier weight ratios (1:1, 1:5, and 1:9) and their effect on the dissolution performance of the drug was evaluated in USP Type 2 apparatus using 0.1 N HCl medium. The dissolution rate was compared with corresponding physical mixtures, a currently marketed soft gelatin capsule product, and free CLF. The effect of different methods of preparation (solvent/melt) on the dissolution rate of CLF was evaluated for PEG solid dispersions. Saturation solubility and phase solubility studies were carried out to indicate drug:carrier interactions in liquid state. Infrared (IR) spectroscopy and X-ray diffraction (XRD) were used to indicate drug:carrier interactions in solid state. Improvement in the drug dissolution rate was observed in solid dispersion formulations as compared to the physical mixtures. The dissolution rate improved with the decreasing weight fraction of the drug in the formulation. Polyvinyl pyrrolidone solid dispersion systems gave a better drug release profile as compared to the corresponding PEG solid dispersions. The effect of molecular weight of the PEG polymers did not follow a definite trend, while PVP 14,000 gave a better dissolution profile as compared to PVP 44,000. Improvement in saturation solubility of the drug in the solid dispersion systems was noted in all cases. Further, IR spectroscopy indicated drug:carrier interactions in solid state in one case and XRD indicated reduction in the crystallinity of CLF in another. It was concluded that solid-dispersion formulations of Clofazimine can be used to design a solid dosage form of the drug, which would have significant advantages over the currently marketed soft gelatin capsule dosage form.  相似文献   

2.
Solid dispersions of nifedipine (NP) with polyethylene glycols (PEG4000 and PEG6000), hydroxypropyl-β-cyclodextrin (HPβCD), and poloxamer 407 (PXM 407) in four mixing ratios were prepared by melting, solvent, and kneading methods in order to improve the dissolution of NP. The enhancement of the dissolution rate and the time for 80% NP dissolution T80% depended on the mixing ratio and the preparation method. The highest dissolution rate and the T80% as short as 15 min were obtained from PXM 407 solid dispersion prepared by the melting method at the mixing ratio of 1:10. The X-ray diffraction (XRD) patterns of solid dispersions at higher proportions of carriers demonstrated consistent with the results from differential scanning calorimetric (DSC) thermograms that NP existed in the amorphous state. The wettability and solubility were markedly improved in the PXM 407 system. The presence of intermolecular hydrogen bonding between NP and PEGs and between HPβCD and PXM 407 was shown by infrared (IR) spectroscopy.  相似文献   

3.
Coprecipitates of diflunisal and polyvinylpyrrolidone (PVP K15, K30, and K90) and physical mixtures were studied using x-ray diffraction analysis, infrared (IR) spectroscopy, differential scanning calorimetry (DSC), and hot-stage microscopy. X-ray diffraction results revealed an almost amorphous state, even in coprecipitates with a high content of drug, next to 70%, which was independent of the polymer molecular weight. The IR spectra of 70:30 drug-PVP solid dispersions suggest the formation of diflunisal-PVP hydrogen bonds. For 70:30 drug-polymer ratio, the physical mixture showed linear dissolution kinetics of free crystals, but the corresponding coprecipitates exhibit two different dissolution processes. When the 25:75 drug-polymer dispersion is analyzed by hot-stage microscopy, only solid plates of PVP are observed; the absence of drug particles may be due to a molecular dispersion of the drug into the polymer. Moreover, polymorphic changes of diflunisal were detected in the solid dispersions in comparison with the corresponding physical mixtures, which are always formed by polymorph II. At high concentrations of drug (75:25 and 80:20), x-ray diffraction patterns of solid dispersions showed the partial recrystallization of the drug, displaying the main diffraction peaks of polymorph I when ethanol was used as coprecipitation solvent, whereas diflunisal form IV was obtained in chloroform.  相似文献   

4.
Solid dispersions (SDs) of chlorpropamide were prepared by the solvent deposition technique using two grades of microcrystalline cellulose as carrier materials with different ratios of drug to carrier. The dissolution rate of chlorpropmide from the SDs was carried out at two physiological pH values of 1.1 and 7.25 simulating gastric and intestinal environments. The dissolution was dependent on the grade, the ratio of drug to carrier and pH. The higher dissolution was observed for more hydrophilic grade of the carrier as well as the higher ratio of carrier to drug. At the higher pH the drug dissolved much faster than the lower pH. X-ray diffraction showed some reduced drug crystallinity in SDs whereas infrared spectroscopy revealed no drug interactions with solvent and the carriers. The enhanced dissolution was attributed to the reduced drug crystallinity, decreased particle size, increased wettability and reduced aggregation of the hydrophobic drug particles. A novel model denoted as reciprocal powered time model with its theoretical justification was employed to analyze the dissolution data and proved to be superior to commonly used models for the analysis of the data. There was a quantitative relation between the model parameter and the ratio of carrier to drug which could be of value in dissolution rate prediction.  相似文献   

5.
Glyburide is a poorly water-soluble oral hypoglycemic agent, with problems of variable bioavailability and bio-inequivalence related to its poor water-solubility. This work investigated the possibility of developing glyburide tablets, allowing fast, reproducible, and complete drug dissolution, by using drug solid dispersion in polyethylene glycol. Phase-solubility studies were performed to investigate the drug-carrier interactions in solution, whereas differential scanning calorimetry, X-ray powder diffraction, and infrared spectroscopy were used to characterize the solid state of solid dispersions. The effects of several variables related to both solid dispersion preparation (cofusion or coevaporation technique, drug-to-carrier ratio, polyethylene glycol molecular weight) and tablet production (direct compression or previous wet-granulation, tablet hardness, drug, and solid dispersion particle size) on drug dissolution behavior were investigated. Tablets obtained by direct compression, with a hardness of 7-9 Kp, and containing larger sized solid dispersions (20-35 mesh, i.e., 850-500 µm) of micronized glyburide in polyethylene glycol 6000 prepared by the cofusion method gave the best results, with a 135% increase in drug dissolution efficiency at 60 min in comparison with a reference tablet formulation containing the pure micronized drug. Moreover, the glyburide dissolution profile from the newly developed tablets was clearly better than those from various commercial tablets at the same drug dosage.  相似文献   

6.
The utility of hypromellose acetate succinate (HPMCAS), a cellulosic enteric coating agent, as a carrier in a solid dispersion of nifedipine (NP) was evaluated in comparison with other polymers, including hypromellose (HPMC), hypromellose phthalate (HPMCP), methacrylic acid ethyl acrylate copolymer (MAEA), and povidone (PVP). An X-ray diffraction study showed that the minimum amount of HPMCAS required to make the drug completely amorphous was the same as that of other cellulosic polymers, and less than that in dispersions using non-cellulosic polymers. Hypromellose acetate succinate showed the highest drug dissolution level from its solid dispersion in a dissolution study using a buffer of pH 6.8. This characteristic was unchanged after a storage test at high temperature and high humidity. The inhibitory effect of HPMCAS on recrystallization of NP from a supersaturated solution was the greatest among all the polymers examined. Further, the drug release pattern could be modulated by altering the ratio of succinoyl and acetyl moieties in the polymer chain. Our results indicate that HPMCAS is an attractive candidate for use as a carrier in solid dispersions.  相似文献   

7.
The purpose of our study was to formulate and evaluate bicalutamide (BL) solid dispersions (SD). The physicochemical properties were evaluated by differential scanning calorimetry (DSC), Fourier-Transform infrared (FT-IR) spectroscopy, Powder X-ray diffractometry (PXRD), dissolution studies, and stability studies. The dissolution studies demonstrated that the dissolution of BL from BL-SD increased with an increase in carrier content (PVP K30). X-ray assays and DSC results both confirmed the amorphous state of BL in BL-SD. Stability studies conducted after 6 months showed that BL exhibited excellent stability in the solid dispersion of PVP K30 (1:5).  相似文献   

8.
The aim of the present study was to enhance the dissolution rate of valdecoxib using its solid dispersions (SDs) with polyethylene glycol (PEG) 4000. The phase solubility behavior of valdecoxib in the presence of various concentrations of PEG 4000 in water was obtained at 37°C. The solubility of valdecoxib increased with increasing amount of PEG 4000 in water. Gibbs free energy (ΔG°tr) values were all negative, indicating the spontaneous nature of valdecoxib solubilization, and they decreased with increase in the PEG 4000 concentration, demonstrating that the reaction conditions became more favorable as the concentration of PEG 4000 increased. The SDs of valdecoxib with PEG 4000 were prepared at 1:1, 1:2, 1:5, and 1:10 (valdecoxib: PEG 4000) ratio by melting method. Evaluation of the properties of the SDs was performed by using dissolution, Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) studies. The SDs of valdecoxib with PEG 4000 exhibited enhanced dissolution rate of valdecoxib, and the rate increased with increasing concentration of PEG 4000 in SDs. Mean dissolution time (MDT) of valdecoxib decreased significantly after preparation of SDs and physical mixture with PEG 4000. The FTIR spectroscopic studies showed the stability of valdecoxib and absence of well-defined valdecoxib-PEG 4000 interaction. The DSC and XRD studies indicated the amorphous state of valdecoxib in SDs of valdecoxib with PEG 4000. The SEM pictures showed the formation of effective SDs of valdecoxib with PEG 4000, since well-defined changes in the surface nature of valdecoxib, SDs, and physical mixture were observed.  相似文献   

9.
In the present study, solid dispersion systems of felodipine (FEL) with polyvinylpyrrolidone (PVP) were developed, in order to enhance solid state stability and release kinetics. The prepared systems were characterized by using Differential Scanning Calorimetry, X-Ray Diffraction, and Scanning Electron Microscopy techniques, while the interactions which take place were identified by using Fourier Transformation-Infrared Spectroscopy. Due to the formation of hydrogen bonds between the carbonyl group of PVP and the amino groups of FEL, transition of FEL from crystalline to amorphous state was achieved. The dispersion of FEL was found to be in nano-scale particle sizes and dependent on the FEL/PVP ratio. This modification leads to partial miscibility of the two components, as it was verified by DSC and optimal glass dispersion of FEL into the polymer matrix since no crystalline structure was detected with XRD. The above deformation has a significant effect on the dissolution enhancement and the release kinetics of FEL, as it causes the pattern to change from linear to logarithmic. An impressive optimization of the dissolution profile is observed corresponding to a rapid release of FEL in the system containing 10% w/w of FEL, releasing 100% in approximately 20 min. The particle size of dispersed FEL into PVP matrix could be classified as the main parameter affecting dissolution optimization. The mechanism of such enhancement consists of the lower energy required for the dissolution due to the amorphous transition and the fine dispersion, which leads to an optimal contact surface of the drug substance with the dissolution media. The prepared systems are stable during storage at 40 ± 1°C and relative humidity of 75 ± 5%. Addition of sodium docusate as surfactant does not affect the release kinetics, but only the initial burst due to its effect on the surface tension and wettability of the systems.  相似文献   

10.
The objective of this study was to improve the dissolution rate of a poor water soluble drug, piroxicam, by solid dispersion technique. Solid dispersions were prepared by three different methods depending on the type of carrier. The dissolution rate of piroxicam was markedly increased in solid dispersion of myrj 52, Eudragit® E100 and mannitol. Solubility studies revealed a marked increase in the solubility of piroxicam with an increase in myrj 52 and Eudragit® E100 concentrations. Data from the X-ray diffraction and FT-IR spectroscopy showed that piroxicam was amorphous in the solid dispersions prepared with dextrin and Eudragit® E100.  相似文献   

11.
Formulation of solid dispersions is one of the effective methods to increase the rate of solubilization and dissolution of poorly soluble drugs. Solid dispersions of chloramphenicol (CP) and sulphamethoxazole (SX) as model drugs were prepared by melt fusion method using polyethylene glycol 8000 (PEG 8000) as an inert carrier. The dissolution rate of CP and SX were rapid from solid dispersions with low drug and high polymer content. Characterization was performed using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR analysis for the solid dispersions of CP and SX showed that there was no interaction between PEG 8000 and the drugs. Hyper-DSC studies revealed that CP and SX were converted into an amorphous form when formulated as solid dispersion in PEG 8000. Mathematical analysis of the release kinetics demonstrated that drug release from the various formulations followed different mechanisms. Permeability studies demonstrated that both CP and SX when formulated as solid dispersions showed enhanced permeability across Caco-2 cells and CP can be classified as well-absorbed compound when formulated as solid dispersions.  相似文献   

12.
The purpose of this study was to evaluate the performance of Neusilin® (NEU) a synthetic magnesium aluminometasilicate as an inorganic drug carrier co-processed with the hydrophilic surfactants Labrasol and Labrafil to develop Tranilast (TLT)-based solid dispersions using continuous melt extrusion (HME) processing. Twin-screw extrusion was optimized to develop various TLT/excipient/surfactant formulations followed by continuous capsule filling in the absence of any downstream equipment. Physicochemical characterization showed the existence of TLT in partially crystalline state in the porous network of inorganic NEU for all extruded formulations. Furthermore, in-line NIR studies revealed a possible intermolecular H-bonding formation between the drug and the carrier resulting in the increase of TLT dissolution rates. The capsules containing TLT-extruded solid dispersions showed enhanced dissolution rates and compared with the marketed Rizaben® product.  相似文献   

13.
The purpose of this study was to prepare and characterize solid dispersions of indomethacin with polyethylene glycol (PEG) 6000, Myrj 52, Eudragit® E100, and different carbohydrates such as lactose, mannitol, sorbitol, and dextrin. Indomethacin is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble antirheumatic agent. The goal was to investigate whether the solid dispersion can improve the dissolution properties of indomethacin. The solid dispersions were prepared by three different methods depending on the type of carrier. The evaluation of the properties of the dispersions was performed using solubility measurements, dissolution studies, Fourier-transform infrared spectroscopy, and x-ray powder diffractometery. The results indicate that lactose, mannitol, sorbitol, and especially Myrj 52 are suitable carriers to enhance the in vitro dissolution rate of indomethacin at pH 7.2. Eudragit E100, Myrj 52, and mannitol increase the dissolution properties at pH 1.2. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions with dextrin and high amounts of mannitol. However, the results from infrared spectroscopy together with those from x-ray diffraction showed well-defined drug-carrier interactions for dextrin coevaporates.  相似文献   

14.
The purpose of this study was to investigate the possibility of preparing solid dispersions of the poorly soluble budesonide by supercritical fluid (SCF) technique, using poly (ethylene oxide) (PEO) as a hydrophilic carrier. The budesonide-PEO solid dispersions were prepared, using supercritical carbon dioxide (SC CO2) as the processing medium, and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), solubility test and dissolution test in order to understand the influence of the SCF process on the physical status of the drug. The endothermic peak of budesonide in the SCF-treated mixtures was significantly reduced, indicating that budesonide was in amorphous form inside the carrier system. This was further confirmed by SEM and PXRD studies. The enhanced dissolution rates of budesonide were observed from SCF-treated budesonide-PEO mixtures. The amorphous characteristic of the budesonide, the better mixing of drug and PEO powders in the presence of SC CO2, together with the improved wettability of the drug in PEO, produced a remarkable enhancement of the in vitro drug dissolution rate. Thus, budesonide-PEO solid dispersions with enhanced dissolution rate can be prepared using organic solvent-free SCF process.  相似文献   

15.
The purpose of this study was to evaluate the potential use of two novel solid formulations of valproic acid (VPA) prepared by complexation with hydrophilic cyclodextrins (CDs) as hydroxypropyl-β- and sulfobutylether-β-cyclodextrin and by solid dispersion (SD) in hydrophilic carriers as polyethylene glycol 6000 (PEG 6000) and polyvinylpyrrolidone K-30 (PVP K-30). The corresponding cyclodextrin-based complexes were prepared by the freeze-drying method while the solid dispersions were obtained by the solvent method. Valproic acid solubility improved by CDs complexation and solid dispersion techniques. Comparison of dissolution profiles with that of VPA sodium salt (NaVP) was made by using release parameters such as dissolution efficiency, percent of drug dissolved after 60 min, and difference and similarity factors. Based on difference and similarity factors, it can be concluded that all the VPA formulations possess dissolution profiles essentially equivalent to those of NaVP at pH 6. However, this conclusion is not confirmed by using the analysis of variance (ANOVA) approach, indicating some significant differences between some SD-based formulations and NaVP at that pH value. Preliminary pharmacological studies in the pentylenetetrazole test in rats showed some important differences among the SD-based formulations, NaVP, and VPA as oil/water emulsion. Some implications and limitations of the investigated formulations are discussed.  相似文献   

16.
Abstract

The effects of different formulations and processes on inducing and maintaining the supersaturation of ternary solid dispersions of ezetimibe (EZ) in two biorelevant media fasted-state simulated intestinal fluid (FaSSIF) and fasted-state simulated gastric fluid (FaSSGF) at different temperatures (25?°C and 37?°C) were investigated in this work.

Ternary solid dispersions of EZ were prepared by adding polymer PVP-K30 and surfactant poloxamer 188 using melt-quenching and spray-drying methods. The resulting solid dispersions were characterized using scanning electron microscopy, differential scanning calorimetry (DSC), modulated DSC, powder X-ray diffraction and Fourier transformation infrared spectroscopy. The dissolution of all the ternary solid dispersions was tested in vitro under non-sink conditions.

All the prepared solid dispersions were amorphous in nature. In FaSSIF at 25?°C, the melt-quenched (MQ) solid dispersions of EZ were more soluble than the spray-dried (SD) solid dispersions and supersaturation was maintained. However, at 37?°C, rapid and variable precipitation behavior was observed for all the MQ and SD formulations. In FaSSGF, the melting method resulted in better solubility than the spray-drying method at both temperatures.

Ternary solid dispersions show potential for improving solubility and supersaturation. However, powder dissolution experiments of these solid dispersions of EZ at 25?°C may not predict the supersaturation behavior at physiologically relevant temperatures.  相似文献   

17.
Nifedipine (N) and nifedipine:Pluronic® F-68 solid dispersion (SD) pellets were developed and characterized for drug release mechanisms from a multi-unit erosion matrix system for controlled release. Nifedipine was micronized using a jet mill. Solid dispersion with Pluronic F-68 was prepared by the fusion method. Nifedipine and SD were characterized by particle size analysis, solubility, differential scanning calorimetry (DSC), and x-ray diffraction (XRD) studies. Samples were subsequently processed into matrix pellets by extrusion/spheronization using Eudragit® L 100-55 and Eudragit® S 100 as release rate-controlling polymers. Drug release mechanisms from pellets were characterized by microscopy and mercury intrusion porosimetry; DSC and XRD studies indicated no polymorphic changes in N after micronization and also confirmed the formation of SD of N with Pluronic F-68. Pellets of N showed a 24-hr drug release profile following zero-order kinetics. Pellets of SD showed a 12-hr release profile following first-order kinetics. Aqueous solubility of N after SD formation was found to be increased 10-fold. Due to increased solubility of N in SD, the drug release mechanism from the multi-unit erosion matrix changed from pure surface erosion to an erosion/diffusion mechanism, thereby altering the release rate and kinetics.  相似文献   

18.
Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (Tg) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in Tg from the predicted values calculated using the Couchman–Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.  相似文献   

19.
Using a mixture of Eudragit® EPO and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) (Kollidon VA64) as carriers, a nimodipine solid dispersion (NM-SD) was prepared by hot-melt extrusion (HME) to achieve high dissolution. The dissolution profiles in 900?mL 0.1?mol/L HCl showed that the drug release of NM-SD reached 90% in 1?h. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) were used to characterize the state of NM. The results obtained showed that NM was in an amorphous form in the solid dispersion (SD). NM-SD tablets (NM-T-SD) were compressed by wet granulation and direct compression, respectively. The stability of NM-T-SD was examined during a 2-month storage period (40°C, RH 75%). The results showed that the dissolution of NM-T-SD was slightly reduced after 2 months storage (40°C, RH 75%), which implied that aging occurred to some degree. However, no NM crystals could be observed by PXRD after 2 months storage for NM-T-SD (F11) prepared by direct compression.  相似文献   

20.
In an attempt to improve the skin penetration of ketoprofen, various transdermal formulations were prepared, and their in vitro skin permeability and in vivo percutaneous absorption were evaluated. In vitro permeation studies were performed using a modified Franz cell diffusion system in which permeation parameters such as cumulative amount at 8 hr Q8hr, steady-state flux Jss, or lag time tL were determined. In the in vivo percutaneous absorption study using the hairless mouse, maximum concentration Cmax and area under the curve at 24 hr AUC24h were measured. The optimal transdermal formulation (oleo-hydrogel formulation) of ketoprofen showed a Q8hr value of 227.20 μg/cm2, a Jss value of 29.61 μg/cm2/hr, and a tL value of 0.46 hr. The Q8hr and Jss values were about 10-fold (p <. 01) higher than those (Q8hr = 19.61 μg/cm2; Jss = 2.66 μg/cm2/hr) from the K-gel and about 3.5-fold (p <. 01) than those (Q8hr = 60.00 μg/cm2; Jss = 7.99 μg/cm2/hr) of the K-plaster. In the in vivo percutaneous absorption, the Cmax (6.82 μg/ml) and AUC24h (55.74 μg·hr/ml) values of the optimal formulation were significantly (p <. 01) higher than those of K-gel and K-plaster. The relative bioavailability of the oleo-hydrogel following transdermal administration in reference to oral administration was about 37%, and the Cmax value (4.73 μg/cm2) in the hypodermis following topical administration was much higher than those from the conventional products (Cmax of K-gel and K-plaster were 0.92 ± 0.19 μg/cm2 and 1.27 ± 0.37 μg/cm2, respectively). These data demonstrate that the oleo-hydrogel formulation of ketoprofen was more beneficial than conventional products (K-gel and K-plaster) in enhancing transdermal permeation and skin absorption of ketoprofen. Furthermore, there was a good correlation between in vitro permeation parameters and in vivo percutaneous absorption parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号