首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LiFePO4/carbon composite cathode material was prepared using polyvinyl alcohol (PVA) as carbon source by pelleting and subsequent pyrolysis in N2. The samples were characterized by XRD, SEM and TGA. Their electrochemical performance was investigated in terms of charge–discharge cycling behavior. It consists of a single LiFePO4 phase and amorphous carbon. The special micro-morphology via the process is favorable for electrochemical properties. The discharge capacity of the LiFePO4/C composite was 145 mAh/g, closer to the theoretical specific capacity of 170 mAh/g at 0.1 C low current density. At 3 C modest current density, the specific capacity was about 80 mAh/g, which can satisfy for transportation applications if having a more planar discharge flat.  相似文献   

2.
Deyu Wang 《Electrochimica acta》2005,50(14):2955-2958
LiFePO4 doped by bivalent cation in Fe-sites show improved rate performance and cyclic stability. Under 10 C rate at room temperature, the capacities of LiFe0.9M0.1PO4 (M = Ni, Co, Mg) maintain at 81.7, 90.4 and 88.7 mAh/g, respectively, in comparison with 53.7 mAh/g for undoped LiFePO4 and 54.8 mAh/g for carbon-coated LiFePO4 (LiFePO4/C). The capacity retention is 95% after 100 cycles for doped samples while this value is only 70% for LiFePO4 and LiFePO4/C. Such a significant improvement in electrochemical performance should be partially related to the enhanced electronic conductivities (from 2.2 × 10−9 to <2.5 × 10−7 S cm−1) and probably the mobility of Li+ ions in the doped samples.  相似文献   

3.
Lei Wang 《Electrochimica acta》2007,52(24):6778-6783
The precursors of LiFePO4 were prepared by low heating solid-state coordination method using lithium acetate, ammonium dihydric phosphate, ferrous oxalate and citric acid as raw materials. Olivine phase LiFePO4 as a cathode material for lithium-ion batteries was successfully synthesized by microwave heating in a few minutes. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize its structure and morphology. Cyclic voltammetry (CV) and charge-discharge cycling performance were used to characterize its electrochemical properties. The results showed that the grain size of the optimal sample was about 40-50 nm, and the as-prepared particles were homogeneous. The nano-sized LiFePO4 obtained has a high electrochemical capacity (125 mAh g−1) and stable cycle ability.  相似文献   

4.
The precursors of LiFePO4 were prepared by a sol-gel method using lithium acetate dihydrate, ferrous sulfate, phosphoric acid, citric acid and polyethylene glycol as raw materials, and then the carbon-modified nanocrystalline LiFePO4 (LiFePO4/C) cathode material was synthesized by a one-step microwave method with the domestic microwave oven. The effect of microwave time and carbon content on the performance of the resulting LiFePO4/C material was investigated. Structural characterization by X-ray diffraction and scanning electron microscopy proved that the olivine phase LiFePO4 was synthesized and the grain size of the samples was several hundred nanometers. Under the optimal conditions of microwave time and carbon content, the charge-discharge performance indicated that the nanosized LiFePO4/C had a high electrochemical capacity at 0.2 C (152 mAh g−1) and improved capacity retention; the exchange current density was 1.6977 mA cm−2. Furthermore, the rate capability was improved effectively after LiFePO4 was modified with carbon, with 59 mAh g−1 being obtained at 20 C.  相似文献   

5.
The effect of CeO2 coating on LiFePO4/C cathode material has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, TEM and their electrochemical performances both at room temperature and low temperature are evaluated by CV, EIS and galvanostatic charge/discharge tests. It is found that, nano-CeO2 particles distribute on the surface of LiFePO4 without destroying the crystal structure of the bulk material. The CeO2-coated LiFePO4/C cathode material shows improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. At −20 °C, the CeO2-coated material delivers discharge capacity of 99.7 mAh/g at 0.1C rate and the capacity retention of 98.6% is obtained after 30 cycles at various charge/discharge rates. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.  相似文献   

6.
A simple high-energy ball milling combined with spray-drying method has been developed to synthesize LiFePO4/carbon composite. This material delivers an improved tap density of 1.3 g/cm3 and a high electronic conductivity of 10−2 to 10−3 S/cm. The electrochemical performance, which is especially notable for its high-rate performance, is excellent. The discharge capacities are as high as 109 mAh/g at the current density of 1100 mA/g (about 6.5C rate) and 94 mAh/g at the current density of 1900 mA/g (about 11C rate). At the high current density of 1700 mA/g (10C rate), it exhibits a long-term cyclability, retaining over 92% of its original discharge capacity beyond 2400 cycles. Therefore, the as-prepared LiFePO4/carbon composite cathode material is capable of such large-scale applications as hybrid and plug-in hybrid electric vehicles.  相似文献   

7.
In this work, LiFePO4/C composites were prepared in hydrothermal system by using iron gluconate as iron source, and two feeding sequences during the preparation were comparatively studied. The morphology, crystal structure and charge–discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and galvanostatic charge–discharge testing. The results showed that the feeding sequences and iron gluconate seriously affected the microstructures and electrochemical properties of the resulting LiFePO4 cathodes in lithium ion batteries. The spindle-shaped LiFePO4 with hierarchical microporous structure self-assembled by nanoparticles has been successfully synthesized by synthesis route B. In addition, the cell performance of the synthesized LiFePO4 by synthesis route B was better than that of LiFePO4 by synthesis route A. Specially at high rates, the superior rate performance of the spindle-shaped LiFePO4/C microstructure (LFP/C-B) was revealed. And special reversible capacities of ∼118 and ∼95 mAh g−1 were obtained at rates of 2 C and 5 C, comparing to ∼96 and ∼68 mAh g−1 for LFP/C-A.  相似文献   

8.
Carbon-dispersed LiFePO4 materials were routinely prepared by heating metal-salt-containing pastes of organogels to temperatures at 300 and 700 °C to benefit the intrinsic conductivity, and we ultimately discerned the optimized carbon content, 4.55 wt%. Carbon doping will decrease tap density of prepared cathode material and then bring about electrode preparing difficulty, so we tried different kinds of organogels to make out the densest carbon composite. They were polyacrylamide (PAM), sugar and phenolic resin. The most excellent pyrolyzed PAM paste was found increasingly electrochemical reversible, exhibiting 113.2 mAh/g at C/6 and 95 mAh/g at C/3. And we found a good cycliability of 95 mAh/g at 0.2 mA cm−2 at room temperature. Seen from atomic force microscopy, this composite was far more different from other pyrolyzed pastes in morphology, which contained judicious designed hiberarchy and highly dispersed nanoparticles. Decreased 2θ in XRD spectra also showed the varied cell parameters, though no exact figures of the varied cell parameters could be given due to a potential existence of an unknown second phase with electrochemical activity.  相似文献   

9.
Sulfolane (also referred to as tetramethylene sulfone, TMS) containing LiPF6 and vinylene carbonate (VC) was tested as a non-flammable electrolyte for a graphite |LiFePO4 lithium-ion battery. Charging/discharging capacity of the LiFePO4 electrode was ca. 150 mAh g−1 (VC content 5 wt%). The capacity of the graphite electrode after 10 cycles establishes at the level of ca. 350 mAh g−1 (C/10 rate). In the case of the full graphite |1 M LiPF6 + TMS + VC 10 wt% |LiFePO4 cell, both charging and discharging capacity (referred to cathode mass) stabilized at a value of ca. 120 mAh g−1. Exchange current density for Li+ reduction on metallic lithium, estimated from electrochemical impedance spectroscopy (EIS) experiments, was jo(Li/Li+) = 8.15 × 10−4 A cm−2. Moreover, EIS suggests formation of the solid electrolyte interface (SEI) on lithium, lithiated graphite and LiFePO4 electrodes, protecting them from further corrosion in contact with the liquid electrolyte. Scanning electron microscopy (SEM) images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. No graphite exfoliation was observed. The main decomposition peak of the LiPF6 + TMS + VC electrolyte (TG/DTA experiment) was present at ca. 275 °C. The LiFePO4(solid) + 1 M LiPF6 + TMS + 10 wt% VC system shows a flash point of ca. 150 °C. This was much higher in comparison to that characteristic of a classical LiFePO4 (solid) + 1 M LiPF6 + 50 wt% EC + 50 wt% DMC system (Tf ≈ 37 °C).  相似文献   

10.
Youyong Liu 《Electrochimica acta》2010,55(16):4694-19237
A simple and effective method, the ultrasonic-assisted co-precipitation method, was employed to synthesize nano-sized LiFePO4/C. A glucose solution was used as the carbon source to produce in situ carbon to improve the conductivity of LiFePO4. Ultrasonic irradiation was adopted to control the size and homogenize the LiFePO4/C particles. The sample was characterized by X-ray powder diffraction, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). FE-SEM and TEM show that the as-prepared sample has a reduced particle size with a uniform size distribution, which is around 50 nm. A uniform amorphous carbon layer with a thickness of about 4-6 nm on the particle surface was observed, as shown in the HRTEM image. The electrochemical performance was demonstrated by the charge-discharge test and electrochemical impedance spectra measurements. The results indicate that the nano-sized LiFePO4/C presents enhanced discharge capacities (159, 147 and 135 mAh g−1 at 0.1, 0.5 and 2 C-rate, respectively) and stable cycling performance. This study offers a simple method to design and synthesis nano-sized cathode materials for lithium-ion batteries.  相似文献   

11.
The porous phase pure lithium iron phosphate (LiFePO4/C) composite particles with a few nanometers thick layer of carbon were synthesized by sol–gel method. The in situ coating of carbon on the LiFePO4 particles was achieved by the pyrolysis of carbon source during the thermal treatment. The synthetic conditions were observed to affect physical, morphological and electrochemical properties of the composites. The composite synthesized via a single-step thermal treatment at 700 °C in the presence of a mixture of citric acid and sucrose possesses a large surface area and porous structure. The structure of the residual carbon coated in this sample is observed to be graphene-rich with the lowest D/G (disordered/graphene) ratio in the Raman spectra. When the three LiFePO4/C composites were evaluated as cathode materials in lithium cells at room temperature, the composite prepared in the presence of sucrose as an additional carbon source showed the highest electrochemical performance exhibiting high discharge capacities of 153 (corresponding to 90% of the theoretical capacity), 120, 112, and 94 mAh/g at 0.1, 1, 3, and 5 C-rates, respectively.  相似文献   

12.
Structural change of Cr-doped LiFePO4/C during cycling is investigated using conventional and synchrotron-based in situ X-ray diffraction techniques. The carbon-coated and Cr-doped LiFePO4 particles are synthesized by a mechanochemical process followed by a one-step heat treatment. The LiFe0.97Cr0.03PO4/C has shown excellent rate performance, delivering the discharge capacity up to 120 mAh/g at 10 C rate. The results suggest that the improvement of the rate performance is attributed to the chromium doping, which facilitates the phase transformation between triphylite and heterosite during cycling, and conductivity improvement by carbon coating. Structural analysis using the synchrotron source also indicates that the doped Cr replaces Fe and/or Li sites in LiFePO4.  相似文献   

13.
A LiFePO4/C composite was successfully prepared by a polymer-pyrolysis–reduction method, using FePO4·2H2O and lithium polyacrylate (PAALi) as raw materials. The structure of the LiFePO4/C composites was investigated by X-ray diffraction (XRD). The micromorphology of the precursor and LiFePO4/C powders was observed using scanning electron microscopy (SEM), and the in situ coating of carbon on the particles was observed by transmission electron microscopy (TEM). Furthermore, the electrochemical properties were evaluated by cyclic voltammograms (CVs), electrochemical impedance spectra (EIS) and constant current charge/discharge cycling tests. The results showed that the sample synthesized at 700 °C had the best electrochemical performance, exhibiting initial discharge capacities of 157, 139 and 109 mAh g−1 at rates of 0.1, 1 and 5 C, respectively. Moreover, the sample presented excellent capacity retention as there was no significant capacity fade after 50 cycles.  相似文献   

14.
LiFePO4/C cathode material has been simply synthesized via a modified in situ solid-state reaction route using the raw materials of Fe2O3, NH4H2PO4, Li2C2O4 and lithium polyacrylate (PAALi). The sintering temperature of LiFePO4/C precursor is studied by thermo-gravimetric (TG)/differential thermal analysis (DTA). The physical properties of LiFePO4/C are then investigated through analysis using by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and the electrochemical properties are investigated by electrochemical impedance spectra (EIS), cyclic voltammogram (CV) and constant current charge/discharge test. The LiFePO4/C composite with the particle size of ∼200 nm shows better discharge capacity (156.4 mAh g−1) than bare LiFePO4 (52.3 mAh g−1) at 0.2 C due to the improved electronic conductivity which is demonstrated by EIS. The as-prepared LiFePO4/C through this method also shows excellent high-rate characteristic and cycle performance. The initial discharge capacity of the sample is 120.5 mAh g−1 and the capacity retention rate is 100.6% after 50 cycles at 5 C rate. The results prove that the using of organic lithium salts can obtain a high performance LiFePO4/C composite.  相似文献   

15.
Effects of ball milling way and time on the phase formation, particulate morphology, carbon content, and consequent electrode performance of LiFePO4/C composite, prepared by high-energy ball milling of Li2CO3, NH4H2PO4, FeC2O4 raw materials with citric acid as organic carbon source followed by thermal treatment, were investigated. Three ball milling ways and five different milling durations varied from 0 to 8 h were compared. LiFePO4/C composites could be obtained from all synthesis processes. TEM examinations demonstrated LiFePO4/C from ball milling in acetone resulted in sphere shape grains with a size of ∼60 nm, similar size was observed for LiFePO4/C from dry ball milling but in a more irregular shape. The ball milling in benzene resulted in a much larger size of ∼250 nm. The LiFePO4/C composites prepared from dry ball milling and ball milling in acetone showed much better electrochemical performance than that from ball milling in benzene. SEM examinations and BET measurements demonstrated that the high-energy ball milling effectively reduced the grain size. A ball milling for 4 h resulted in the best electrochemical performance, likely due to the proper amount of carbon and proper carbon structure were created.  相似文献   

16.
Spray drying and carbothermal method was employed to investigate reaction mechanism and electrochemical performance of LiFePO4/C cathode by using different carbon sources. Micro-structural variations of LiFePO4/C precursors using different carbon sources were studied by Thermo-gravimetric (TG)/Differential Thermal Analysis (DTA). The LiFePO4/C samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) absorption spectroscopy. The results indicated that the crystallization temperature of LiFePO4 was 453 °C, while the transform temperature was 539 °C from Li3Fe2(PO4)3 to LiFePO4. At 840 °C, LiFePO4/C sample with an excess of impurity phase Fe2P gave much poorer electrochemical performance. The severe decomposition of LiFePO4/C happened at 938 °C and generated impurity phases Li4P2O7 and Fe2P. The clear discharge platform of Fe2P emerged at around 2.2 V.  相似文献   

17.
LiFePO4 can be used as a positive electrode material for lithium-ion batteries by making composite with electrical conductive carbonaceous materials. In this study, LiFePO4/C (carbon) composite was prepared by a soft chemistry route, in which sucrose was used as a carbon source of a low price. We tried to optimize a Li/(LiFePO4/C) cell performance through changing synthetic conditions and discussed the factors affecting the electrochemical performances of the cell, such as the amount of the carbon source, synthetic temperature, gas flow rate of pyrolysis and the formation of secondary phases. It was found that the connection of the residual carbon and Fe2P to LiFePO4 particles and the amount of these two phases were important factors. In our experimental conditions, LiFePO4/C including 9.72 wt.% of residual carbon, prepared at 800 °C for 12 h showed the highest reversible capacity and the best C rate performance among the synthesized materials; 130 mAh g−1 at 10C rate and 50 °C.  相似文献   

18.
Carbon coating and iron phosphides of high electron conductivity were introduced into the LiFePO4 materials which were derived via a sol-gel method in order to improve the high discharge rate performance. The start constituents were FeC2O4·2H2O, LiOH·H2O, NH4H2PO4 and ethylene glycol. Effects of the calcination temperature and the ethylene glycol on the structure and the electrochemical performance of the LiFePO4 materials were investigated. Structure analyses showed that the addition of ethylene glycol caused an obvious decrease in the particle size of LiFePO4. Calcination temperature and ethylene glycol jointly affected the formation of iron phosphides. Combining the electrochemical testing, it was found that, at low discharge rate, small particle size and high content of LiFePO4 were much important for the capacity rather than the iron phosphides, and relative high content of Fe2P (e.g. 8 wt.%) even worsened the capacity. However, with the increase of the discharge rate, the high electron conductive iron phosphides turned to play important role on the capacity. Fe2P effectively increased both the reaction and diffusion kinetics and hence enhanced the utilization efficiency of the LiFePO4 at high discharge rate. Combining relative small particle size, even 2 wt.% of iron phosphides could improve the high rate performance of LiFePO4/C significantly.  相似文献   

19.
Olivine structure LiMnPO4 has been considered as one of the very promising electrodes for lithium-ion batteries because of their low cost, low toxicity and high voltage plateau compared with LiFePO4. In order to improve the electrochemical performance a key challenge in the field of lithium-ion battery, is to explore and invent suitable synthetic route to control the size and morphology of LiMnPO4. Here a detailed study exploring the novel route of microwave-hydrothermal (MH) synthesis for successfully obtaining LiMnPO4 crystals within few minutes is reported and the reaction process discussed in detail. Variation of the synthetic parameters show that a decrease in reactant concentration could lead to LiMnPO4 nano-platelets orientated in the ac plane with a very high electrochemical performance. The effect of the starting precursor (like, Mn) concentration as a means to tailor LiMnPO4 electrochemical performance is discussed. The effect of alteration of size, morphology, lattice parameters and crystal structure induced by addition of additives like citric acid (H3cit) and sodium dodecyl benzene sulfonate (SDBS) is further described and an example of the first reversible discharge of a product treated with H3cit obtained by MH route as high as 89.0 mAh/g, is shown. The general investigation demonstrates that there is a relationship among microwave irradiation condition, crystal structure, morphology and electrochemical performance that can be exploited for the design of next generation lithium batteries.  相似文献   

20.
Monoclinic phase FePO4·2H2O nanoplates are synthesized very easily in a waterbath and are lithiated to LiFePO4/C nanoparticles by a simple rheological phase method. The thickness of the nanoplates can be tuned simply by changing the concentrations of the reactants. The LiFePO4/C nanoparticles lithiated from the thin FePO4·2H2O nanoplates, with the sizes about 50 nm and the carbon coating layer at the surface 1–2 nm, show excellent high-rate performance and long-term cyclability as the cathode for lithium ion batteries, delivering discharge capacities of more than 150, 120, 110, 100, and 75 mAh g−1 at rates of 5 C, 10 C, 15 C, 20 C and 30 C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号